满分5 > 高中数学试题 >

椭圆E的中心在原点O,焦点在x轴上,离心率,过点C(-1,0)的直线l交椭圆于A...

椭圆E的中心在原点O,焦点在x轴上,离心率manfen5.com 满分网,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:manfen5.com 满分网(λ≥2).
(1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积;
(2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程;
(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程.
(1)先设出椭圆的方程,根据离心率求得a和c的关系式,进而根据a2=b2+c2得a和b的关系,根据直线L与椭圆相交,且,进而求得(x1+1,y1)=λ(-1-x2,-y2),联立方程组,把y=k(x+1)代入椭圆方程整理后表示出x1+x2和x1x2,进而利用弦长公式表示出三角形OAB的面积,联立方程求得三角形OAB的面积. (2)根据(1)中的三角形OAB的面积,利用基本不等式求得求得面积最小,推断出此时x1+x2=-1,进而求得b和λ的关系,代入椭圆方程求得,椭圆的标准方程. (3)把(1)中的方程②③联立求得x1和x2的表达式,然后代入方程④中,整理求得k和λ的关系式,利用基本不等式求得椭圆短半轴长取得最大值时,k的值,则椭圆的方程可得. 【解析】 设椭圆方程为:(a>b>0), 由及a2=b2+c2得a2=3b2, 故椭圆方程为x2+3y2=3b2① (1)∵直线L:y=k(x+1)交椭圆于A(x1,y1),B(x2,y2)两点, 并且(λ≥2) ∴(x1+1,y1)=λ(-1-x2,-y2), 即② 把y=k(x+1)代入椭圆方程, 得:(3k2+1)x2+6k2x+3k2-3b2=0,且△=k2(3b2-1)+b2>0, ∴③④ ∴ 联立②、③得: ∴ (2) 当且仅当即时,S△OAB取得最大值. 此时x1+x2=-1, 又∵x1+1=-λ(x2+1), ∴,代入④得: 故此时椭圆的方程为 (3)由②.③联立得:,,将x1.x2代入④得:, 由k2=λ-1 得: 易知:当λ≥2时,3b2是λ的减函数, 故当λ=2时,(3b2)max=3. 故当λ=2, k=±1时,椭圆短半轴长取得最大值,此时椭圆方程为x2+3y2=3.
复制答案
考点分析:
相关试题推荐
关于x的方程2x2-tx-2=0的两根为α,β(α<β),函数f(x)=manfen5.com 满分网
(1)求f(α)和f(β)的值.
(2)证明:f(x)在[α,β]上是增函数.
(3)对任意正数x1.x2,求证:manfen5.com 满分网(文科不做)
查看答案
如图,曲线y2=x(y≥0)上的点Pi与x轴的正半轴上的点Qi及原点O构成一系列正三角形△OP1Q1,△Q1P2Q2,…△Qn-1PnQn…设正三角形Qn-1PnQn的边长为an,n∈N﹡(记Q为O),Qn(Sn,0).
(1)求a1的值;
(2)求数列{an}的通项公式an

manfen5.com 满分网 查看答案
数列{an}的前n项和为Sn,Sn=2an-3n(n∈N*
(1)若数列{an+c}成等比数列,求常数c值;
(2)求数列{an}的通项公式an
(3)数列{an}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
查看答案
如图:直平行六面体ABCD-A1B1C1D1,底面ABCD是边长为2a的菱形,∠BAD=60°,E为AB中点,二面角A1-ED-A为60°.
(I)求证:平面A1ED⊥平面ABB1A1
(II)求二面角A1-ED-C1的余弦值;
(III)求点C1到平面A1ED的距离.

manfen5.com 满分网 查看答案
袋中装有大小相同的2个白球和3个黑球.
(Ⅰ)从袋中任意取出两个球,求两球颜色不同的概率;
(Ⅱ)从袋中任意取出一个球,记住颜色后放回袋中,再任意取出一个球,求两次取出的球颜色不同的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.