满分5 > 高中数学试题 >

如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,...

manfen5.com 满分网如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(Ⅰ)求证:BD⊥FG;
(Ⅱ)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由;
(Ⅲ)当二面角B-PC-D的大小为manfen5.com 满分网时,求PC与底面ABCD所成角的正切值.
(Ⅰ)要证:BD⊥FG,先证BD⊥平面PAC即可. (Ⅱ)确定点G在线段AC上的位置,使FG∥平面PBD,FG∥平面PBD内的一条直线即可. (Ⅲ)当二面角B-PC-D的大小为时,求PC与底面ABCD所成角的正切值. 只要作出二面角的平面角,解三角形即可求出结果. 这三个问题可以利用空间直角坐标系,解答(Ⅰ)求数量积即可. (Ⅱ)设才点的坐标,向量共线即可解答. (Ⅲ)利用向量数量积求解法向量,然后转化求出PC与底面ABCD所成角的正切值. 证明:(Ⅰ)∵PA⊥面ABCD,四边形ABCD是正方形,其对角线BD,AC交于点E, ∴PA⊥BD,AC⊥BD, ∴BD⊥平面PAC, ∵FG⊂平面PAC, ∴BD⊥FG(5分) 解(Ⅱ):当G为EC中点,即AG=AC时,FG∥平面PBD,(7分) 理由如下: 连接PE,由F为PC中点,G为EC中点,知FG∥PE, 而FGË平面PBD,PE⊂平面PBD, 故FG∥平面PBD.(9分) 解(Ⅲ):作BH^PC于H,连接DH, ∵PA⊥面ABCD,四边形ABCD是正方形, ∴PB=PD, 又∵BC=DC,PC=PC, ∴△PCB≌△PCD, ∴DH⊥PC,且DH=BH, ∴ÐBHD就是二面角B-PC-D的平面角,(11分) 即ÐBHD=, ∵PA⊥面ABCD,∴ÐPCA就是PC与底面ABCD所成的角(12分) 连接EH,则EH⊥BD,ÐBHE=,EH⊥PC, ∴tanÐBHE=,而BE=EC, ∴,∴sinÐPCA=,∴tanÐPCA=, ∴PC与底面ABCD所成角的正切值是(14分) 或用向量方法: 【解析】 以A为原点,AB,AD,AP所在的直线分别为x,y,z轴建立空间直角坐标系如图所示,设正方形ABCD的边长为1,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,a)(a>0),E(),F(),G(m,m,0)(0<m<)(2分) (Ⅰ)=(-1,1,0),=(),×=-m++m-+0=0, ∴BD⊥FG(5分) (Ⅱ)要使FG∥平面PBD,只需FG∥EP,而=(),由=l可得, 解得l=1,m=,(7分) ∴G(,,0),∴, 故当AG=AC时,FG∥平面PBD(9分) (Ⅲ)设平面PBC的一个法向量为=(x,y,z), 则,而,, ∴,取z=1,得=(a,0,1),同理可得平面PDC的一个法向量为=(0,a,1), 设,所成的角为q,则|cosq|=|cos|=,即=,∴,∴a=1(12分) ∵PA⊥面ABCD,∴ÐPCA就是PC与底面ABCD所成的角, ∴tanÐPCA=(14分)
复制答案
考点分析:
相关试题推荐
某市十所重点中学进行高三联考,共有5000名考生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:
(1)根据上面的频率分布表,求①,②,③,④处的数值;
(2)根据上面的频率分布表,在所给的坐标系中画出在区间[80,150]上的频率分布直方图;
(3)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从总体中任意抽取3个个体,成绩落在[100,120]中的个体数为ξ,求ξ的分布列和数学期望.
分组频数频率
[80,90)
[90,100)0.050
[100,110)0.200
[110,120)360.300
[120,130)0.275
[130,140)12
[140,150)0.050
合计


manfen5.com 满分网 查看答案
在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,已知向量manfen5.com 满分网
(1)若a2-c2=b2-mbc,求实数m的值.
(2)若a=manfen5.com 满分网,求△ABC面积的最大值.
查看答案
有下列命题:
①若f(x)存在导函数,则f′(2x)=[f(2x)]
②若函数h(x)=cos4x-sin4x,则manfen5.com 满分网
③若函数g(x)=(x-1)(x-2)…(x-2009)(x-2010),则g′(2010)=2009!.
④若三次函数f(x)=ax3+bx2+cx+d,则“a+b+c=0”是“f(x)有极值点”的充要条件.
其中真命题的序号是    查看答案
manfen5.com 满分网某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,且第一排和最后一排的距离为10manfen5.com 满分网米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以    (米/秒)的速度匀速升旗. 查看答案
若实数x,y满足不等式组manfen5.com 满分网则z=|x+2y-10|的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.