满分5 > 高中数学试题 >

已知曲线C的极坐标方程为, (1)若以极点为原点,极轴所在的直线为x轴,求曲线C...

已知曲线C的极坐标方程为manfen5.com 满分网
(1)若以极点为原点,极轴所在的直线为x轴,求曲线C的直角坐标方程;
(2)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值.
(1)利用ρsinθ=y,ρcosθ=x化简曲线C的极坐标方程,即可得到直角坐标方程. (2)P(x,y)是曲线C上的一个动点,利用椭圆的参数方程,设P(3cosθ,2sinθ),化简3x+4y的表达式,然后求其最大值. 【解析】 (1)曲线C的极坐标方程为, ;(4分) (2)设P(3cosθ,2sinθ), 则3x+4y=(6分) 当sin(θ+φ)=1时,3x+4y的最大值为(10分)
复制答案
考点分析:
相关试题推荐
选修4-1:几何证明选讲
如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转60° 到OD.
(1)求线段PD的长;
(2)在如图所示的图形中是否有长度为manfen5.com 满分网的线段?若有,指出该线段;若没有,说明理由.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(I)求f(x)在[0,1]上的最大值;
(II)若对任意的实数manfen5.com 满分网,不等式|a-lnx|+ln[f'(x)+3x]>0恒成立,求实数a的取值范围;
(III)若关于x的方程f(x)=-2x+b在[0,1]上恰有两个不同的实根,求实数b的取值范围.
查看答案
已知中心在原点,焦点在x轴上的椭圆C的离心率为manfen5.com 满分网,且经过点manfen5.com 满分网,过点P(2,1)的直线l与椭圆C在第一象限相切于点M.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求直线l的方程以及点M的坐标;
(Ⅲ)是否存在过点P的直线l1与椭圆C相交于不同的两点A,B,满足manfen5.com 满分网?若存在,求直线l1的方程;若不存在,请说明理由.
查看答案
manfen5.com 满分网如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(Ⅰ)求证:BD⊥FG;
(Ⅱ)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由;
(Ⅲ)当二面角B-PC-D的大小为manfen5.com 满分网时,求PC与底面ABCD所成角的正切值.
查看答案
某市十所重点中学进行高三联考,共有5000名考生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:
(1)根据上面的频率分布表,求①,②,③,④处的数值;
(2)根据上面的频率分布表,在所给的坐标系中画出在区间[80,150]上的频率分布直方图;
(3)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从总体中任意抽取3个个体,成绩落在[100,120]中的个体数为ξ,求ξ的分布列和数学期望.
分组频数频率
[80,90)
[90,100)0.050
[100,110)0.200
[110,120)360.300
[120,130)0.275
[130,140)12
[140,150)0.050
合计


manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.