满分5 > 高中数学试题 >

如图,正三棱柱ABC-A1B1C1的底面边长为a,点M在边BC上,△AMC1是以...

如图,正三棱柱ABC-A1B1C1的底面边长为a,点M在边BC上,△AMC1是以点M为直角顶点的等腰直角三角形.
(Ⅰ)求证点M为边BC的中点;
(Ⅱ)求C到平面AMC1的距离;
(Ⅲ)求二面角M-AC1-C的大小.

manfen5.com 满分网
(Ⅰ)根据等腰直角三角形,可得AM⊥C1M且AM=C1M,根据三垂线定理可知AM⊥CM,而底面ABC为边长为a的正三角形,则即可证得点M为BC边的中点; (Ⅱ)过点C作CH⊥MC1,根据线面垂直的判定定理可知AM⊥平面C1CM,CH⊥平面C1AM,则CH即为点C到平面AMC1的距离,根据等面积法可求出CH的长; (Ⅲ)过点C作CI⊥AC1于I,连HI,根据三垂线定理可知HI⊥AC1,根据二面角的平面角的定义可知∠CIH是二面角M-AC1-C的平面角,在直角三角形ACC1中利用等面积法可求出CI,即可求出二面角M-AC1-C的大小. 【解析】 (Ⅰ)∵△AMC1为以点M为直角顶点的等腰直角三角形, ∴AM⊥C1M且AM=C1M ∵三棱柱ABC-A1B1C1,∴CC1⊥底面ABC ∴C1M在底面内射影为CM,AM⊥CM. ∵底面ABC为边长为a的正三角形, ∴点M为BC边的中点 (Ⅱ)过点C作CH⊥MC1,由(Ⅰ)知AM⊥C1M且AM⊥CM, ∴AM⊥平面C1CM∵CH在平面C1CM内, ∴CH⊥AM, ∴CH⊥平面C1AM 由(Ⅰ)知, ∴ ∴ ∴点C到平面AMC1的距离为底面边长为 (Ⅲ)过点C作CI⊥AC1于I,连HI, ∵CH⊥平面C1AM, ∴HI为CI在平面C1AM内的射影, ∴HI⊥AC1,∠CIH是二面角M-AC1-C的平面角, 在直角三角形ACC1中, ∴∠CIH=45°, ∴二面角M-AC1-C的大小为45°
复制答案
考点分析:
相关试题推荐
某运动员射击一次所得环数X的分布如下:
X678910
P0.20.30.30.2
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ
(Ⅰ)求该运动员两次都掵中7环的概率;
(Ⅱ)求ξ的分布列.
(Ⅲ)求ξ的数学期望.
查看答案
已知向量manfen5.com 满分网,且A,B,C分别是△ABC三边a,b,c所对的角.
(1)求∠C的大小;
(2)若sinA,sinC,sinB成等比数列,且manfen5.com 满分网,求c的值.
查看答案
函数y=lg(sinx+cosx)的单调递减区间为     查看答案
将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,则不同的填写方法共有     种. 查看答案
若抛物线f(x)=x2+ax与直线f'(x)-1-y=0相切,则此切线方程为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.