满分5 > 高中数学试题 >

已知定义在R上的函数f(x)=x2(ax-3),其中a为常数. (1)若x=1是...

已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围;
(3)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求正数a的取值范围.
(1)由x=1是函数f(x)的一个极值点则知f'(1)=0,代入导函数即可; (2)要求函数f(x)在区间(-1,0)上是增函数,则要求导函数f'(x)在区间(-1,0)大于等于零即可,另外要注意对a的讨论; (3)要求函数g(x)=f(x)+f'(x),x∈[0,2],在x=0处取得最大值,即求函数g(x)的极值并将之与函数端点值 g(0),g(2)进行比较大小,得出在函数g(x)[0,2]上的最大值只能为g(0)或g(2),再根据条件在x=0处取得最大值,得到g(0)≥g(2)即可 【解析】 (1)∵f(x)=ax3-3x2 ∴f'(x)=3ax2-6x=3x(ax-2). ∵x=1是f(x)的一个极值点, ∴f'(1)=0, ∴a=2 (2)①当a=0时,f(x)=-3x2在区间(-1,0)上是增函数,∴a=0符合题意; ②当a≠0时,f'(x)=3ax,令f'(x)=0得:x1=0,x2= 当a>0时,对任意x∈(-1,0),f'(x)>0, ∴a>0 (符合题意) 当a<0时,当时,f'(x)>0, ∴,∴-2≤a<0(符合题意) 综上所述,a≥-2. (3)a>0,g(x)=ax3+(3a-3)x2-6x,x∈[0,2]. g'(x)=3ax2+2(3a-3)x-6=3[ax2+2(a-1)x-2], 令g'(x)=0,即ax2+2(a-1)x-2=0(*),显然有△=4a2+4>0. 设方程(*)的两个根为x1,x2,由(*)式得,不妨设x1<0<x2. 当0<x2<2时,g(x2)为极小值 所以g(x)在[0,2]上的最大值只能为g(0)或g(2) 当x2≥2时,由于g(x)在[0,2]上是单调递减函数 所以最大值为g(0),所以在[0,2]上的最大值只能为g(0)或g(2) 又已知g(x)在x=0处取得最大值 所以g(0)≥g(2) 即0≥20a-24,解得a≤,又因为a>0,所以. 故答案为:(1)a=2;(2)a≥-2;(3)
复制答案
考点分析:
相关试题推荐
若等差数列{an}的前n项和为Sn,且满足manfen5.com 满分网为常数,则称该数列为S数列.
(Ⅰ)判断an=4n-2是否为S数列?并说明理由;
(Ⅱ)若首项为a1的等差数列{an}(an不为常数)为S数列,试求出其通项公式.
查看答案
已知函数f(x)=xlnx.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围.
查看答案
甲、乙两人参加一次交通知识考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(Ⅰ)求甲、乙两人考试均合格的概率;
(Ⅱ)求甲答对试题数ξ的概率分布及数学期望.
查看答案
已知函数manfen5.com 满分网,b为常数,b∈R,且manfen5.com 满分网是方程f(x)=0的解.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[0,π]时,求函数f(x)值域.
查看答案
已知函数y=loga(x-1)+1(a>0,且a≠1)的图象恒过定点A,若点A在一次函数y=mx+n的图象上,其中manfen5.com 满分网
最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.