满分5 > 高中数学试题 >

函数的部分图象如图所示,则= .

manfen5.com 满分网函数manfen5.com 满分网的部分图象如图所示,则manfen5.com 满分网=   
根据正切函数的图象求出A、B两点的坐标,再求出向量、和的坐标,根据向量数量积的坐标运算求出结果. 【解析】 由图象得,令=0,即,k=0时解得x=2, 令=1,即,解得x=3, ∴A(2,0),B(3,1), ∴=(2,0),=(3,1),=(1,1), ∴=(5,1)•(1,1)=5+1=6. 故答案为:6.
复制答案
考点分析:
相关试题推荐
已知直线l1:x-2y-1=0,直线l2:ax-by-1=0,其中a,b{1,2,3,4,5,6}.则直线l1∩l2=∅的概率为    查看答案
已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数manfen5.com 满分网图象上.
(Ⅰ)若数列{an}是等差数列,证明:数列{bn}是等比数列;
(Ⅱ)设an=n(n为正整数),过点Pn,Pn+1的直线与两坐标轴所围成的三角形面积为cn,试求最小的实数t,使cn≤t对一切正整数n恒成立;
(Ⅲ)对(Ⅱ)中的数列{an},对每个正整数k,在ak与ak+1之间插入3k-1个3,得到一个新的数列{dn},设Sn是数列{dn}的前n项和,试探究2008是否数列{Sn}中的某一项,写出你探究得到的结论并给出证明.
查看答案
已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围;
(3)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求正数a的取值范围.
查看答案
若等差数列{an}的前n项和为Sn,且满足manfen5.com 满分网为常数,则称该数列为S数列.
(Ⅰ)判断an=4n-2是否为S数列?并说明理由;
(Ⅱ)若首项为a1的等差数列{an}(an不为常数)为S数列,试求出其通项公式.
查看答案
已知函数f(x)=xlnx.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.