满分5 > 高中数学试题 >

已知矩形ABCD中,,BC=1.以AB的中点O为原点建立如图所示的平面直角坐标系...

已知矩形ABCD中,manfen5.com 满分网,BC=1.以AB的中点O为原点建立如图所示的平面直角坐标系xoy.
(1)求以A,B为焦点,且过C,D两点的椭圆的标准方程;
(2)过点P(0,2)的直线l与(1)中的椭圆交于M,N两点,是否存在直线l,使得以线段MN为直径的圆恰好过原点?若存在,求出直线l的方程;若不存在,说明理由.

manfen5.com 满分网
(1)由题意可得点A,B,C的坐标,设出椭圆的标准方程,根据题意知2a=AC+BC,求得a,进而根据b,a和c的关系求得b,则椭圆的方程可得. (2)设直线l的方程为y=kx+2.与椭圆方程联立,根据判别式大于0求得k的范围,设M,N两点坐标分别为(x1,y1),(x2,y2).根据韦达定理求得x1+x2和x1x2,进而根据若以MN为直径的圆恰好过原点,推断则,得知x1x2+y1y2=0,根据x1x2求得y1y2代入即可求得k,最后检验看是否符合题意. 【解析】 (1)由题意可得点A,B,C的坐标分别为. 设椭圆的标准方程是. 则2a=AC+BC, 即,所以a=2. 所以b2=a2-c2=4-2=2. 所以椭圆的标准方程是. (2)由题意知,直线l的斜率存在,可设直线l的方程为y=kx+2. 由得(1+2k2)x2+8kx+4=0. 因为M,N在椭圆上, 所以△=64k2-16(1+2k2)>0. 设M,N两点坐标分别为(x1,y1),(x2,y2). 则, 若以MN为直径的圆恰好过原点,则, 所以x1x2+y1y2=0, 所以,x1x2+(kx1+2)(kx2+2)=0, 即(1+k2)x1x2+2k(x1+x2)+4=0, 所以,,即, 得k2=2, 经验证,此时△=48>0. 所以直线l的方程为,或. 即所求直线存在,其方程为.
复制答案
考点分析:
相关试题推荐
已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域manfen5.com 满分网内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.
查看答案
甲、乙、丙三人参加央视的“幸运52”.幸运的是,他们都得到了一件精美的礼物.其过程是这样的:墙上挂着两串礼物(如图),每次只能从其中-串的最下端取一件,直到礼物取完为止.甲第一个取得礼物,然后,乙、丙依次取得第2件、第3件礼物.事后他们打开这些礼物仔细比较发现礼物B最精美,那么取得礼物B可能性最大的是    
manfen5.com 满分网 查看答案
已知抛物线y2=px的焦点为椭圆manfen5.com 满分网的右焦点,则点P的坐标为    查看答案
已知a>0,设函数manfen5.com 满分网的最大值为M,最小值为N,那么M+N=    查看答案
动点P(a,b)在不等式组manfen5.com 满分网表示的平面区域内部及其边界上运动,则manfen5.com 满分网的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.