满分5 >
高中数学试题 >
设z=1-i(1是虚数单位),则=( ) A.1+1 B.-1+1 C.1-i ...
设z=1-i(1是虚数单位),则

=( )
A.1+1
B.-1+1
C.1-i
D.-1-1
考点分析:
相关试题推荐
设函数f(x)=|x-1|+|x-2|
(1)求不等式f(x)≤3的解集;
(2)若不等式||a+b|-|a-b||≤|a|f(x)(a≠0,a∈R,b∈R)恒成立,求实数x的范围.
查看答案
在平面直角坐标系xoy中,曲线C
1的参数方程为

(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C
2的极坐标方程为ρ=2cosθ-4sinθ(ρ>0).
(Ⅰ)化曲线C
1、C
2的方程为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)设曲线C
1与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作曲线C
2的切线l,求切线l的方程.
查看答案
如图,在△ABC中,∠B=90°,以AB为直径的⊙O交AC于D,过点D作⊙O的切线交BC于E,AE交⊙O于点F.
(1)证明:E是BC的中点;
(2)证明:AD•AC=AE•AF.
查看答案
设F
1,F
2分别是椭圆C:

=1(a>b>0)的左、右焦点,且椭圆上一点

到F
1,F
2两点距离之和等于4.
(Ⅰ)求此椭圆方程;
(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点

,求k的取值范围.
查看答案
已知函数f(x)=x
3+ax
2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1.
(Ⅰ)若y=f(x)在x=-2时有极值,求y=f(x)表达式;
(Ⅱ)在(Ⅰ)的条件下,求y=f(x)在[-3,1]的最大值;
(Ⅲ)若函数y=f(x)在[-1,0]上单调递减,求实数b的取值范围.
查看答案