满分5 > 高中数学试题 >

设函数f(x)=x2-mlnx,h(x)=x2-x+a. (1)当a=0时,f(...

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,即:x2-mlnx≥x2-x,转化为即:m≤在(1,+∞)上恒成立,从而得出实数m的取值范围. (2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,即:k(x)=x-2lnx-a,设y1=x-2lnx,y2=a,分别画出它们的图象,由图得实数a的取值范围. (3)先假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性,由图可知,只须函数f(x)=x2-mlnx在x=处取得极小值即可. 【解析】 (1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立, 即:x2-mlnx≥x2-x, mlnx≤x,即:m≤在(1,+∞)上恒成立, 因为在(1,+∞)上的最小值为:e, ∴m≤e. 实数m的取值范围:m≤e (2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点, 即:k(x)=x-2lnx-a, 设y1=x-2lnx,y2=a,分别画出它们的图象, 由图得: 实数a的取值范围(2-2ln2,3-2ln3]; (3)假设存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性, 由图可知,只须函数f(x)=x2-mlnx在x=处取得极小值即可. ∵f(x)=x2-mlnx ∴f′(x)=2x-m×,将x=代入得: 1-2m=0, ∴m= 故存在实数m=,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性.
复制答案
考点分析:
相关试题推荐
设数列{an} 的前n项和Sn=n2,数列{bn} 满足manfen5.com 满分网
(Ⅰ)若b1,b2,b8 成等比数列,试求m 的值;
(Ⅱ)是否存在m,使得数列{bn} 中存在某项bt 满足b1,b4,bt(t∈N*,t≥5)成等差数列?若存在,请指出符合题意的m
的个数;若不存在,请说明理由.
查看答案
假设某市2004年新建住房面积400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米,那么,到哪一年底,
(1)该市历年所建中低价层的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?
(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?
查看答案
已知中心在原点O,焦点在x轴上的椭圆C的离心率为manfen5.com 满分网,点A,B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为manfen5.com 满分网
(1)求椭圆C的标准方程;
(2)已知点E(3,0),设点P、Q是椭圆C上的两个动点,满足EP⊥EQ,求manfen5.com 满分网的取值范围.

manfen5.com 满分网 查看答案
在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.D为BC的中点,M为AA1的中点.
(1)求证:AD∥平面MB1C;
(2)求证:平面MB1C⊥侧面BB1C1C.

manfen5.com 满分网 查看答案
已知A,B,C为△ABC的三个内角,向量manfen5.com 满分网,且manfen5.com 满分网
(1)求tanA•tanB的值;
(2)求C的最大值,并判断此时△ABC的形状.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.