满分5 > 高中数学试题 >

已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线...

已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.
(1)求函数f(x)的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤c,求实数c的最小值;
(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
(1)由题意,利用导函数的几何含义及切点的实质建立a,b的方程,然后求解即可; (2)由题意,对于定义域内任意自变量都使得|f(x1)-f(x2)|≤c,可以转化为求函数在定义域下的最值即可得解; (3)由题意,若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,等价与函数在切点处导函数值等于切线的斜率这一方程有3解. 【解析】 (1)f'(x)=3ax2+2bx-3.(2分) 根据题意,得即解得 所以f(x)=x3-3x. (2)令f'(x)=0,即3x2-3=0.得x=±1. 当x∈(-∞,-1)时,f′(x)>0,函数f(x)在此区间单调递增; 当x∈(-1,1)时,f′(x)<0,函数f(x)在此区间单调递减 因为f(-1)=2,f(1)=-2, 所以当x∈[-2,2]时,f(x)max=2,f(x)min=-2. 则对于区间[-2,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,所以c≥4. 所以c的最小值为4. (3)因为点M(2,m)(m≠2)不在曲线y=f(x)上,所以可设切点为(x,y). 则y=x3-3x. 因为f'(x)=3x2-3,所以切线的斜率为3x2-3. 则3x2-3=, 即2x3-6x2+6+m=0. 因为过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线, 所以方程2x3-6x2+6+m=0有三个不同的实数解. 所以函数g(x)=2x3-6x2+6+m有三个不同的零点. 则g'(x)=6x2-12x.令g'(x)=0,则x=0或x=2. 当x∈(-∞,0)时,g′(x)>0,函数g(x)在此区间单调递增;当x∈(0,2)时,g′(x)<0,函数g(x)在此区间单调递减; 所以,函数g(x)在x=0处取极大值,在x=2处取极小值,有方程与函数的关系知要满足题意必须满足: ,即,解得-6<m<2.
复制答案
考点分析:
相关试题推荐
已知椭圆C:manfen5.com 满分网的离心率为manfen5.com 满分网,F1、F2分别为椭圆C的左、右焦点,若椭圆C的焦距为2.
(1)求椭圆C的方程;
(2)设M为椭圆上任意一点,以M为圆心,MF1为半径作圆M,当圆M与椭圆的右准线l有公共点时,求△MF1F2面积的最大值.
查看答案
如图,矩形ABCD是机器人踢足球的场地,AB=170cm,AD=80cm,机器人先从AD的中点E进入场地到点F处,EF=40cm,EF⊥AD.场地内有一小球从B点向A点运动,机器人从F点出发去截小球,现机器人和小球同时出发,它们均作匀速直线运动,并且小球运动的速度是机器人行走速度的2倍.若忽略机器人原地旋转所需的时间,则机器人最快可在何处截住小球?
manfen5.com 满分网
查看答案
如图,在四棱锥E-ABCD中,四边形ABCD为平行四边形,BE=BC,AE⊥BE,M为CE上一点,且BM⊥平面ACE.
(1)求证:AE⊥BC;
(2)如果点N为线段AB的中点,求证:MN∥平面ADE.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)若manfen5.com 满分网manfen5.com 满分网,求tanα的值;
(2)若manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
设M是由满足下列性质的函数f(x)构成的集合:在定义域内存在x,使得f(x+1)=f(x)+f(1)成立.已知下列函数:①manfen5.com 满分网;②f(x)=2x;③f(x)=lg(x2+2);④f(x)=cosπx,其中属于集合M的函数是     (写出所有满足要求的函数的序号). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.