满分5 > 高中数学试题 >

已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B...

已知椭圆manfen5.com 满分网的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:manfen5.com 满分网为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)由题意知a=2,b=c,b2=2,由此可知椭圆方程为. (2)设M(2,y),P(x1,y1),,直线CM:,代入椭圆方程x2+2y2=4,得,然后利用根与系数的关系能够推导出为定值. (3)设存在Q(m,0)满足条件,则MQ⊥DP.,再由,由此可知存在Q(0,0)满足条件. 【解析】 (1)a=2,b=c,a2=b2+c2,∴b2=2; ∴椭圆方程为(4分) (2)C(-2,0),D(2,0),设M(2,y),P(x1,y1), 直线CM:,代入椭圆方程x2+2y2=4, 得(6分) ∵,∴(8分) ∴(定值)(10分) (3)设存在Q(m,0)满足条件,则MQ⊥DP(11分) (12分) 则由,从而得m=0 ∴存在Q(0,0)满足条件(14分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2+2x+alnx
(1)若f(x)是区间(0,1)上单调函数,求a的取值范围;
(2)若∀t≥1,f(2t-1)≥2f(t)-3,试求a的取值范围.
查看答案
如图,在棱长为a的正方体ABCD-A1B1C1D1中,E、F分别为棱AB和BC的中点,EF交BD于H.
(1)求二面角B1-EF-B的正切值;
(2)试在棱B1B上找一点M,使D1M⊥平面EFB1,并证明你的结论;
(3)求点D1到平面EFB1的距离.

manfen5.com 满分网 查看答案
设关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
查看答案
在△ABC中,设A、B、C的对边分别为a、b、c,向量manfen5.com 满分网=(cosA,sinA),manfen5.com 满分网=(manfen5.com 满分网),若|manfen5.com 满分网|=2.(1)求角A的大小;(2)若manfen5.com 满分网的面积.
查看答案
如图,P是圆O外的一点,PD为切线,D为切点,割线PEF经过圆心O,PF=6,PD=2manfen5.com 满分网,则∠DFP=    °.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.