设数列{a
n}的前n(n∈N
*)项和为S
n,a
1=1,a
2=2,当n>2时,S
n=
a
n+1.
(1)求a
n;(2)求数列{(S
n-34)a
n}(n∈N
*)最小的项.
考点分析:
相关试题推荐
已知函数
,a为常数,
(1)若a=1,证明f(x)≥0;
(2)对任意x∈(1+∞)f(x)>1恒成立,求实数a的取值范围.
查看答案
已知圆P:x
2+y
2-2y-3=0,抛物线C以圆心P为焦点,以坐标原点为顶点.
(1)求抛物线C的方程;
(2)设圆P与抛物线C在第一象限的交点为A,过A作抛物线C的切线与y轴的交点为Q,动点M到P、Q两点距离之和等于6,求M的轨迹方程.
查看答案
a、b是常数,关于x的一元二次方程x
2+(a+b)x+3+
=0有实数解记为事件A.
(1)若a、b分别表示投掷两枚均匀骰子出现的点数,求P(A);
(2)若a∈R、b∈R,-6≤a+b≤6且-6≤a-b≤6,求P(A).
查看答案
如图,已知正四棱柱ABCD-A
1B
1C
1D
1与它的侧视图(或称左视图),E是DD
1上一点,AE⊥B
1C.
(1)求证AE⊥平面B
1CD;
(2)求三棱锥E-ACD的体积.
查看答案
在直角坐标系中,已知A(3,0),B(0,3),C(cosθ,sinθ).
(1)若θ锐角,且sinθ=
,求
•
;(2)若
⊥
,求sin2θ.
查看答案