满分5 >
高中数学试题 >
若{an}为等差数列,Sn是其前n项和.且,则tana6= .
若{a
n}为等差数列,S
n是其前n项和.且
,则tana
6=
.
考点分析:
相关试题推荐
若复数z=1-mi(i为虚数单位,m∈R),若z
2=-2i,则复数z的虚部为
.
查看答案
本题有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分
(1)二阶矩阵M对应的变换将向量
,
分别变换成向量
,
,直线l在M的变换下所得到的直线l′的方程是2x-y-1=0,求直线l的方程.
(2)过点P(-3,0)且倾斜角为30°的直线l和曲线C:
(s为参数)相交于A,B两点,求线段AB的长.
(3)若不等式|a-1|≥x+2y+2z,对满足x
2+y
2+z
2=1的一切实数x,y,z恒成立,求实数a的取值范围.
查看答案
定义F(x,y)=(1+x)
y,x,y∈(0,+∞),令函数f(x)=F(1,log
2(x
2-4x+9))的图象为曲线C,曲线C与y轴交于点A(0,m),过坐标原点O向曲线C作切线,切点为B(n,t)(n>0),设曲线C在点A、B之间的曲线段与线段OA、OB所围成图形的面积为S,求S的值.
查看答案
已知抛物线C的顶点为坐标原点,椭圆C′的对称轴是坐标轴,抛物线C在x轴上的焦点恰好是椭圆C′的焦点
(Ⅰ)若抛物线C和椭圆C′都经过点M(1,2),求抛物线C和椭圆C′的方程;
(Ⅱ)已知动直线l过点p(3,0),交抛物线C于A,B两点,直线l′:x=2被以AP为直径的圆截得的弦长为定值,求抛物线C的方程;
(Ⅲ)在(Ⅱ)的条件下,分别过A,B的抛物线C的两条切线的交点E的轨迹为D,直线AB与轨迹D交于点F,求|EF|的最小值.
查看答案
如图,AB为圆O的直径,点E、F在圆上,已知AB∥EF,AB=BC=4,AE=EF=BF=2,AD=2.
直角梯形ABCD所在平面与圆O所在平面互相垂直.
(Ⅰ)求证:平面CBE⊥平面DAE;
(Ⅱ)求平面CDF与平面ABCD所成角的余弦值.
查看答案