某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x(x∈N
*)名员工从事第三产业,调整后他们平均每人每年创造利润为
万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.2x%.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?
(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA⊥PD,E,F分别为PC,BD的中点.证明
(1)EF∥平面PAD;
(2)EF⊥平面PDC.
查看答案
设函数f(x)=m•n,其中向量m=(2,2cosx),n=(
,2cosx),x∈R.
(1)求f(x)的最大值与最小正周期;
(2)在△ABC中,a,b,c分别是A,B,C的对边,f(A)=4,a=
,b+c=3(b>c),求b,c的值.
查看答案
下列数阵称为“森德拉姆筛”,其特点是每行每列都是等差数列,则表中数字2010共出现
次.
2 | 3 | 4 | 5 | 6 | 7 | … |
3 | 5 | 7 | 9 | 11 | 13 | … |
4 | 7 | 10 | 13 | 16 | 19 | … |
5 | 9 | 13 | 17 | 21 | 25 | … |
6 | 11 | 16 | 21 | 26 | 31 | … |
7 | 13 | 19 | 25 | 31 | 37 | … |
… | … | … | … | … | … | … |
查看答案
已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F
1,F
2,且它们在第一象限的交点为P,△PF
1F
2是以PF
1为底边的等腰三角形.若|PF
1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是
.
查看答案
已知平面区域D由A(1,3),B(5,2),C(3,1)为顶点的三角形内部和边界组成.若在区域D上有无穷多个点(x,y)可使目标函数z=x+my取得最小值,则实数m=
.
查看答案