满分5 > 高中数学试题 >

如果复数 (其中i为虚数单位,b∈R)的实部和虚部互为相反数,那么b等于 .

如果复数 manfen5.com 满分网(其中i为虚数单位,b∈R)的实部和虚部互为相反数,那么b等于   
化简复数  为2-2b+(-4-b)i,由题意可得 2-2b+(-4-b)=0,解得 b 的值. 【解析】 复数 ==2-2b+(-4-b)i,∵它的实部和虚部互为相反数, ∴2-2b+(-4-b)=0,∴b=-, 故答案为-.
复制答案
考点分析:
相关试题推荐
已知全集U=R,A={x|x+1<0},B={x|x-3<0},那么(CUA)∩B=    查看答案
已知函数manfen5.com 满分网,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最大值.(其中e为自然对数的底数)
查看答案
设椭圆C1manfen5.com 满分网的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:y=mx2-n(m>0,n>0)与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求抛物线C2的方程;
(Ⅱ)设M(0,manfen5.com 满分网),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网,设正项数列an的首项a1=2,前n 项和Sn满足Sn=f(Sn-1)(n>1,且n∈N*).
(1)求an的表达式;
(2)在平面直角坐标系内,直线ln的斜率为an,且ln与曲线y=x2相切,ln又与y轴交于点Dn(0,bn),当n∈N*时,记manfen5.com 满分网,若manfen5.com 满分网,设Tn=C1+C2+C3+…+Cn,求manfen5.com 满分网
查看答案
如图1,在平面内,ABCD是∠BAD=60°且AB=a的菱形,ADD''A1和CDD'C1都是正方形.将两个正方形分别沿AD,CD折起,使D''与D'重合于点D1.设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设BE=t(t>0)(图2).
(1)设二面角E-AC-D1的大小为q,若manfen5.com 满分网,求t的取值范围;
(2)在线段D1E上是否存在点P,使平面PA1C1∥平面EAC,若存在,求出P分manfen5.com 满分网所成的比λ;若不存在,请说明理由.
manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.