满分5 > 高中数学试题 >

为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑...

为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=manfen5.com 满分网,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
(I)由建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=,若不建隔热层,每年能源消耗费用为8万元.我们可得C(0)=8,得k=40,进而得到.建造费用为C1(x)=6x,则根据隔热层建造费用与20年的能源消耗费用之和为f(x),我们不难得到f(x)的表达式. (II)由(1)中所求的f(x)的表达式,我们利用导数法,求出函数f(x)的单调性,然后根据函数单调性易求出总费用f(x)的最小值. 【解析】 (Ⅰ)设隔热层厚度为xcm,由题设,每年能源消耗费用为. 再由C(0)=8,得k=40, 因此. 而建造费用为C1(x)=6x, 最后得隔热层建造费用与20年的能源消耗费用之和为 (Ⅱ),令f'(x)=0,即. 解得x=5,(舍去). 当0<x<5时,f′(x)<0,当5<x<10时,f′(x)>0,故x=5是f(x)的最小值点,对应的最小值为. 当隔热层修建5cm厚时,总费用达到最小值为70万元.
复制答案
考点分析:
相关试题推荐
如图所示,在棱长为2的正方体中,E、F分别为DD1、BD的中点.  
(1)求证:EF∥面ABC1D1
(2)求证EF∥BD1
(3)求三棱锥manfen5.com 满分网的体积.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(3sin α,cos α),manfen5.com 满分网=(2sin α,5sin α-4cos α),α∈manfen5.com 满分网,且manfen5.com 满分网
(1)求tan α的值;
(2)求cosmanfen5.com 满分网的值.
查看答案
已知等差数列{an}首项为a,公差为b,等比数列{bn}首项为b,公比为a,其中a,b都是大于1的正整数,且a1<b1,b2<a3,对于任意的n∈N*,总存在m∈N*,使得am+3=bn成立,则an=    查看答案
已知D是△ABC边BC延长线上一点,记manfen5.com 满分网manfen5.com 满分网+(1-λ)manfen5.com 满分网.若关于x的方程2sin2x-(λ+1)sinx+1=0在[0,2π)上恰有两解,则实数λ的取值范围是    查看答案
已知实数a,b,c满足a≤b≤c,且ab+bc+ca=0,abc=1,不等式|a+b|≥k|c|恒成立.则实数k的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.