已知函数
(a∈R)
(1)若函数f(x)在x=2处的切线方程为y=x+b,求a,b的值;
(2)若函数f(x)在(1,+∞)为增函数,求a的取值范围;
(3)讨论方程f(x)=0解的个数,并说明理由.
考点分析:
相关试题推荐
已知数列{a
n}是首项
,公比
的等比数列,设b
n+15log
3a
n=t,常数t∈N
*,数列{c
n}满足c
n=a
nb
n.
(1)求证:{b
n}是等差数列;
(2)若{c
n}是递减数列,求t的最小值;
(3)是否存在正整数k,使c
k,c
k+1,c
k+2重新排列后成等比数列?若存在,求k,t的值;若不存在,说明理由.
查看答案
给定椭圆
>b>0),称圆心在原点O,半径为
的圆是椭圆C的“伴随圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F
1的距离为
.
(1)求椭圆C的方程及其“伴随圆”方程;
(2)若倾斜角为45°的直线l与椭圆C只有一个公共点,且与椭圆C的伴随圆相交于M、N两点,求弦MN的长;
(3)点P是椭圆C的伴随圆上的一个动点,过点P作直线l
1,l
2,使得l
1,l
2与椭圆C都只有一个公共点,求证:l
1⊥l
2.
查看答案
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案
如图所示,在棱长为2的正方体中,E、F分别为DD
1、BD的中点.
(1)求证:EF∥面ABC
1D
1
(2)求证EF∥BD
1.
(3)求三棱锥
的体积.
查看答案
已知向量
=(3sin α,cos α),
=(2sin α,5sin α-4cos α),α∈
,且
.
(1)求tan α的值;
(2)求cos
的值.
查看答案