满分5 > 高中数学试题 >

如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,,OA⊥底面ABCD...

如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,manfen5.com 满分网,OA⊥底面ABCD,OA=2,M为OA的中点.
(Ⅰ)求异面直线AB与MD所成角的大小;
(Ⅱ)求平面OAB与平面OCD所成的二面角的余弦值.

manfen5.com 满分网
(Ⅰ)作AP⊥CD于点P,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系,求出与,然后利用向量的夹角公式求出所求即可; (Ⅱ)先求平面OCD的法向量与平面OAB的一个法向量,然后利用向量的夹角公式求出平面OAB与平面OCD所成的二面角的余弦值. 【解析】 作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系,则, O(0,0,2),M(0,0,1) (Ⅰ)设AB与MD所成的角为θ, ∵, ∴, ∴AB与MD所成角的大小为(5分) (Ⅱ)∵, ∴设平面OCD的法向量为, 则,即, 取,解得.(6分) 易知平面OAB的一个法向量为(7分) .(9分) 由图形知,平面OAB与平面OCD所成的二面角的余弦值为(10分)
复制答案
考点分析:
相关试题推荐
已知曲线C的参数方程为manfen5.com 满分网(α∈R,α为参数).当极坐标系的极点与直角坐标系的原点重合,且极轴在x轴的正半轴上时,曲线D的极坐标力程为ρsin(θ+manfen5.com 满分网)=manfen5.com 满分网a.
(I)试将曲线C的方程化为普通方程,曲线D的方程化为直角坐标方程;
(II)试确定实数a的取值范围,使曲线C与曲线D有公共点.
查看答案
已知a、b∈R,若M=[manfen5.com 满分网]所对应的变换TM把直线l:3x-2y=1变换为自身,试求实数a、b的值.
查看答案
已知函数manfen5.com 满分网(a∈R)
(1)若函数f(x)在x=2处的切线方程为y=x+b,求a,b的值;
(2)若函数f(x)在(1,+∞)为增函数,求a的取值范围;
(3)讨论方程f(x)=0解的个数,并说明理由.
查看答案
已知数列{an}是首项manfen5.com 满分网,公比manfen5.com 满分网的等比数列,设bn+15log3an=t,常数t∈N*,数列{cn}满足cn=anbn
(1)求证:{bn}是等差数列;
(2)若{cn}是递减数列,求t的最小值;
(3)是否存在正整数k,使ck,ck+1,ck+2重新排列后成等比数列?若存在,求k,t的值;若不存在,说明理由.
查看答案
给定椭圆manfen5.com 满分网>b>0),称圆心在原点O,半径为manfen5.com 满分网的圆是椭圆C的“伴随圆”.若椭圆C的一个焦点为manfen5.com 满分网,其短轴上的一个端点到F1的距离为manfen5.com 满分网
(1)求椭圆C的方程及其“伴随圆”方程;
(2)若倾斜角为45°的直线l与椭圆C只有一个公共点,且与椭圆C的伴随圆相交于M、N两点,求弦MN的长;
(3)点P是椭圆C的伴随圆上的一个动点,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,求证:l1⊥l2
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.