(Ⅰ)将a=2代入到解析式中,并求导.令f′(x)=0,求出极值点,并列表判断极大值极小值点.
(Ⅱ)一方面,利用(Ⅰ)的结论,找出f(x)的极小值点a,即为g(x)的极小值点.另一方面,对g(x)求导,求出极小值点.再建立等式,即a=,得到a,b的关系式.由a的范围算出极大值g(1)的范围,从而得证.
【解析】
(Ⅰ)当a=2时,f′(x)=x2-3x+2=(x-1)(x-2).
列表如下:
x (-∞,1) 1 (1,2) 2 (2,+∞)
f′(x) + - +
f(x) 单调递增 极大值 单调递减 极小值 单调递增
所以,f(x)的极小值为f(2)=.
(Ⅱ)f′(x)=x2-(a+1)x+a=(x-1)(x-a).
由于a>1,
所以f(x)的极小值点x=a,则g(x)的极小值点也为x=a、
而g′(x)=12x2+6bx-6(b+2)=6(x-1)(2x+b+2),
所以,
即b=-2(a+1).
又因为1<a≤2,
所以g(x)极大值=g(1)
=4+3b-6(b+2)
=-3b-8
=6a-2≤10.
故g(x)的极大值小于等于10.