满分5 > 高中数学试题 >

关于x的不等式lg(|x+3|-|x-7|)<m. (Ⅰ)当m=1时,解此不等式...

关于x的不等式lg(|x+3|-|x-7|)<m.
(Ⅰ)当m=1时,解此不等式;
(Ⅱ)设函数f(x)=lg(|x+3|-|x-7|),当m为何值时,f(x)<m恒成立?
(1)转化成绝对值不等式,令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集. (2)解决恒成立问题,可将问题转化为研究函数f(x)的最大值小于m即可. 【解析】 (1)当m=1时,原不等式可变为0<|x+3|-|x-7|<10, 可得其解集为{x|2<x<7}. (2)设t=|x+3|-|x-7|, 则由对数定义及绝对值的几何意义知0<t≤10, 因y=lgx在(0,+∞)上为增函数, 则lgt≤1,当t=10,x≥7时,lgt=1, 故只需m>1即可, 即m>1时,f(x)<m恒成立.
复制答案
考点分析:
相关试题推荐
已知在平面直角坐标系xOy内,点P(x,y)在曲线C:manfen5.com 满分网为参数,θ∈R)上运动.以Ox为极轴建立极坐标系,直线l的极坐标方程为manfen5.com 满分网
(Ⅰ)写出曲线C的标准方程和直线l的直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,点M在曲线C上移动,试求△ABM面积的最大值.
查看答案
如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O相交于点M、T(不与A、B重合),DN与圆O相切于点N,连接MC,MB,OT.
(Ⅰ)求证:DT•DM=DO•DC;
(Ⅱ)若∠DOT=60°,试求∠BMC的大小.

manfen5.com 满分网 查看答案
若函数f(x)=manfen5.com 满分网在[1,+∞)上为增函数.
(Ⅰ)求正实数a的取值范围.
(Ⅱ)若a=1,求征:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网( n∈N*且n≥2 )
查看答案
已知圆manfen5.com 满分网,定点manfen5.com 满分网,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足manfen5.com 满分网
(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设manfen5.com 满分网,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.
查看答案
如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,E是棱CC1上的动点,F是AB中点,AC=BC=2,
AA1=4.
(Ⅰ)求证:CF⊥平面ABB1
(Ⅱ)若二面角A-EB1-B的大小是45°,求CE的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.