满分5 > 高中数学试题 >

已知函数f(x)=x3-3ax(a∈R) (1)当a=1时,求f(x)的极小值;...

已知函数f(x)=x3-3ax(a∈R)
(1)当a=1时,求f(x)的极小值;
(2)若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,求a的取值范围;
(3)设g(x)=|f(x)|,x∈[-1,1],求g(x)的最大值F(a)的解析式.
(1)由f(x)=x3-3ax,得f′(x)=3x2-3a,当f′(x)>0,f′(x)<0时,分别得到f(x)的单调递增区间、单调递减区间,由此可以得到极小值为f(1)=-2. (2)要使直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,只需令直线的斜率-1小于f(x)的切线的最小值即可,也就是-1<-3a. (3)由已知易得g(x)为[-1,1]上的偶函数,只需求在[0,1]上的最大值F(a).有必要对a进行讨论:①当a≤0时,f′(x)≥0,得F(a)=f(1)=1-3a;②当a≥1时,f(x)≤0,且f(x)在[0,1]上单调递减,得g(x)=-f(x),则F(a)=-f(1)=3a-1;当0<a<1时,得f(x)在[0,]上单调递减,在[,1]上单调递增.当f(1)≤0时,f(x)≤0,所以得g(x)=-f(x),F(a)=-f()=2a,当f(1)>0,需要g(x)在x=处的极值与f(1)进行比较大小,分别求出a的取值范围,即综上所述求出F(a)的解析式. 【解析】 (1)∵当a=1时,f′(x)=3x2-3,令f′(x)=0,得x=-1或x=1,当f′(x)<0,即x∈(-1,1)时,f(x)为减函数;当f′(x)>0,即x∈(-∞,-1],或x∈[1,+∞)时,f(x)为增函数.∴f(x)在(-1,1)上单调递减,在(-∞,-1],[1,+∞)上单调递增∴f(x)的极小值是f(1)=-2 (2)∵f′(x)=3x2-3a≥-3a,∴要使直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,当且仅当-1<-3a时成立,∴ (3)因g(x)=|f(x)|=|x3-3ax|在[-1,1]上是偶函数,故只要求在[0,1]上的最大值 ①当a≤0时,f′(x)≥0,f(x)在[0,1]上单调递增且f(0)=0,∴g(x)=f(x),F(a)=f(1)=1-3a. ②当a>0时,, (ⅰ)当时,g(x)=|f(x)|=-f(x),-f(x)在[0,1]上单调递增,此时F(a)=-f(1)=3a-1 (ⅱ)当时,当f′(x)>0,即x>或x<-时,f(x)单调递增;当f′(x)<0,即-<x<时,f(x)单调递减.所以,在单调递增. 1°当时,,; 2°当 (ⅰ)当 (ⅱ)当 综上所述
复制答案
考点分析:
相关试题推荐
如图,斜三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的角,AA1=2,低面ABC是边长为2的正三角形,其重心为G点(重心为三条中线的交点).E是线段BC1上一点且manfen5.com 满分网
(1)求证:GE∥侧面AA1B1B;
(2)求平面B1GE与底面ABC所成锐二面角的大小.

manfen5.com 满分网 查看答案
一个口袋内装有大小相同且已编有不同号码的6个黑球和4个红球,某人一次从中摸出2个球
(1)如果摸到的球中含有红球就中奖,那么此人中奖的概率是多少?
(2)如果摸到的2个球都是红球,那么就中大奖,在有放回的3次摸球中,此人恰好两次中大奖的概率是多少?
(3)在(2)条件下,级ζ为三次摸球中中大奖的次数,求ζ的数学期望.
查看答案
在△ABC中,a,b,c分别为角A,B,C所对的三边,a2-(b-c)2=bc,
(1)求角A;
(2)若BC=2manfen5.com 满分网,角B等于x,周长为y,求函数y=f(x)的取值范围.
查看答案
已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)=axg(x),f′(x)g(x)<f(x)g′(x),manfen5.com 满分网,在有穷数列manfen5.com 满分网中任取前k项相加,则前k项和大于manfen5.com 满分网的概率为    查看答案
椭圆ax2+by2=1与直线y=1-x交于A、B两点,过原点与线段AB中点的直线的斜率为manfen5.com 满分网,则manfen5.com 满分网的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.