满分5 > 高中数学试题 >

已知f(x)=ax3+bx2+cx+d(a≠0)是定义在R上的函数,其图象交x轴...

已知f(x)=ax3+bx2+cx+d(a≠0)是定义在R上的函数,其图象交x轴于A、B、C三点,若点B的坐标为(2,0),且f(x)在[-1,0]和[4,5]上有相同的单调性,在[0,2]和[4,5]上有相反的单调性.
(1)求实数C的值;
(2)在函数f(x)的图象上是否存在点M(x,y),使f(x)在点M处的切线斜率为3b?若存在,求出点M的坐标;不存在说明理由.
1由函数极值点定义解得f'(0)=0. 2假设存在 若求出x的值即证明假设否则不存在 【解析】 (1)由已知得f'(x)=3ax2+2bx+c因为f(x)在[-1,0]和[0,2]上有相反的单调性, 所以x=0是f(x)的一个极值点∴f'(0)=0∴c=0(4分) (2)∵c=0,∴f'(x)=3ax2+2bx 因为f(x)在[0,2]和[4,5]上有相反单调性, 假设存在点M(x,y),使得f(x)在点M处的切线斜率为3b,则f'(x)=3b ∵ 故不存在点M(x,y),使得f(x)在点M处的切线斜率为3b(12分)
复制答案
考点分析:
相关试题推荐
已知椭圆C:manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,且在x轴上的顶点分别为A1(-2,0),A2(2,0).
(1)求椭圆方程;
(2)若直线l:x=t(t>2)与x轴交于点T,P为l上异于T的任一点,直线PA1、PA2分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.
查看答案
已知数列{an}满足a1=-1,an+1-2an-3=0数列{bn}满足bn=log2(an+3).
(1)求{bn}的通项公式;
(2)若数列{2n+1bn}的前n项的和为sn,试比较sn与8n2-4n的大小.
查看答案
如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD.
(1)求直线FD与平面ABCD所成的角的正切值;
(2)求点D到平面BCF的距离;
(3)求二面角B-FC-D的大小.

manfen5.com 满分网 查看答案
已知A、B、C是△ABC三内角,向量manfen5.com 满分网=(-1,manfen5.com 满分网),manfen5.com 满分网=(cosA,sinA),且manfen5.com 满分网
(Ⅰ)求角A
(Ⅱ)若manfen5.com 满分网
查看答案
四川灾后重建工程督导评估小组五名专家被随机分配到A、B、C、D四所不同的学校进行重建评估工作,要求每所学校至少有一名专家.
(1)求评估小组中甲、乙两名专家同时被分配到A校的概率;
(2)求评估小组中甲、乙两名专家不在同一所学校的概率;
(3)设随机变量ξ为这五名专家到A校评估的人数,求ξ的数学期望Eξ.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.