满分5 > 高中数学试题 >

设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+...

设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是     .如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是    
根据“存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数”的定义,对于定义域为[-1,+∞)的函数f(x)=x2为m高调函数,易知f(-1)=f(1),故得m≥1-(-1),即m≥2;定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,画出函数图象,可得4≥3a2-(-a2)⇒-1≤a≤1. 【解析】 ∵f(-1)=f(1),m≥1-(-1),即m≥2, f(x)=|x-a2|-a2的图象如图,∴4≥3a2-(-a2)⇒-1≤a≤1. 故答案为:m≥2;-1≤a≤1
复制答案
考点分析:
相关试题推荐
从1~4这4个数中任取一个数作分子,从2~4这3个数中任取一个数作分母,组成一个分数,则出现分子、分母互质的分数的概率是     查看答案
在等比数列{an}中,若a7+a8+a9+a10=manfen5.com 满分网,a8a9=-manfen5.com 满分网,则manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网=    查看答案
已知manfen5.com 满分网(n∈N*)展开式中常数项是Cn2,则n的值为     查看答案
已知manfen5.com 满分网=(2,3),manfen5.com 满分网=(-4,7),则manfen5.com 满分网manfen5.com 满分网上的投影等于    查看答案
已知manfen5.com 满分网,M、N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM、PN的斜率分别为k1、k2(k1k2≠0),若|k1|+|k2|的最小值为1,则椭圆的离心率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.