满分5 > 高中数学试题 >

设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*). (1)...

设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*).
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网,数列{bn}的前n项和为Bn,若存在整数m,使对任意n∈N*且n≥2,都有manfen5.com 满分网成立,求m的最大值;
(1)根据an=Sn-Sn-1,求得数列的递推式,进而整理得推断出数列是公差为1的等差数列.根据S1=2a1-22,求得a1,进而根据等差数列的通项公式求得,则an可求得. (2)把(1)中求得an代入中求得bn,则B3n-Bn可求令,进而表示出f(n+1)两式相减求得f(n+1)>f(n),判断出数列{f(n)}为递增数列.进而求得数列的最小值,进而根据,,求得m的范围.利用m为整数求得m的最大值. 【解析】 (1)由Sn=2an-2n+1,得Sn-1=2an-1-2n(n≥2). 两式相减,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2). 于是,所以数列是公差为1的等差数列. 又S1=2a1-22,所以a1=4. 所以, 故an=(n+1)•2n. (2)因为=,则. 令,则. 所以=. 即f(n+1)>f(n),所以数列{f(n)}为递增数列. 所以当n≥2时,f(n)的最小值为. 据题意,,即m<19.又m为整数, 故m的最大值为18.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,线段AB与y轴交于点F(0,manfen5.com 满分网),直线AB的斜率为k,且满足|AF|•|BF|=1+k2
(1)证明:对任意的实数k,一定存在以y轴为对称轴且经过A、B、O三点的抛物线C,并求出抛物线C的方程;
(2)对(1)中的抛物线C,若直线l:y=x+m(m>0)与其交于M、N两点,求∠MON的取值范围.
查看答案
已知函数f(x)=manfen5.com 满分网
(1)当manfen5.com 满分网时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.
查看答案
在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,manfen5.com 满分网,试确定λ的值,使得二面角Q-BD-P为45°.

manfen5.com 满分网 查看答案
某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).
(Ⅰ)如果把10万元投资甲项目,用ξ表示投资收益(收益=回收资金-投资资金),求ξ的期望Eξ;
(Ⅱ)若把10万元投资投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.
查看答案
已知△ABC中,a、b、c分别是三个内角A、B、C的对边,关于x的不等式x2cosC+4xsinC+6<0的解集是空集
(Ⅰ)求角C的最大值;
(Ⅱ)若manfen5.com 满分网,△ABC的面积manfen5.com 满分网,求当角C取最大值时a+b的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.