满分5 > 高中数学试题 >

设集合A={x|x2>x},集合B=,则A∩B等于( ) A.{x|x<0或1<...

设集合A={x|x2>x},集合B=manfen5.com 满分网,则A∩B等于( )
A.{x|x<0或1<x<2}
B.{x|x>2}
C.{x|1<x<2}
D.{x|x<2}
由题意求出集合A,求出集合B,利用集合的交集直接求出A∩B,得到选项. 【解析】 集合A={x|x2>x}={x|x<0或x>1},集合B=={x|0<x<2}, 所以A∩B={x|x<0或x>1}∩{x|0<x<2}={x|1<x<2}, 故选C.
复制答案
考点分析:
相关试题推荐
设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*).
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网,数列{bn}的前n项和为Bn,若存在整数m,使对任意n∈N*且n≥2,都有manfen5.com 满分网成立,求m的最大值;
查看答案
在平面直角坐标系xOy中,线段AB与y轴交于点F(0,manfen5.com 满分网),直线AB的斜率为k,且满足|AF|•|BF|=1+k2
(1)证明:对任意的实数k,一定存在以y轴为对称轴且经过A、B、O三点的抛物线C,并求出抛物线C的方程;
(2)对(1)中的抛物线C,若直线l:y=x+m(m>0)与其交于M、N两点,求∠MON的取值范围.
查看答案
已知函数f(x)=manfen5.com 满分网
(1)当manfen5.com 满分网时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.
查看答案
在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,manfen5.com 满分网,试确定λ的值,使得二面角Q-BD-P为45°.

manfen5.com 满分网 查看答案
某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).
(Ⅰ)如果把10万元投资甲项目,用ξ表示投资收益(收益=回收资金-投资资金),求ξ的期望Eξ;
(Ⅱ)若把10万元投资投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.