(1)由tanA的值,根据A的范围,利用同角三角函数间的基本关系分别求出sinA和cosA的值,同时由cosB的值,由B的范围,利用同角三角函数间的基本关系求出sinB的值,然后根据诱导公式得cosC等于-cos(A+B),利用两角和的余弦函数公式化简,将各自的值代入即可求出cosC的值,根据C的范围,利用特殊角的三角函数值即可得到角C的度数;
(2)由sinA的值大于sinB的值,得到角A大于角B,即可得a大于b,得到b为最短的边,然后利用正弦定理,由b,sinB及sinC的值即可求出最长边c的值.
【解析】
(1)∵tanA=,
∴A为锐角,则cosA=,sinA=.
又cosB=,∴B为锐角,则sinB=,
∴cosC=-cos(A+B)=-cosAcosB+sinAsinB
=-×+×=-.
又C∈(0,π),
∴C=π.
(2)∵sinA=>sinB=,
∴A>B,即a>b,
∴b最小,c最大,
由正弦定理得=,
得c=•b=•=5.