满分5 > 高中数学试题 >

若椭圆+=1(a>b>0)的离心率e=,则双曲线-=1的离心率为( ) A. B...

若椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率e=manfen5.com 满分网,则双曲线manfen5.com 满分网-manfen5.com 满分网=1的离心率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
利用a与b表示出椭圆的离心率并且结合椭圆离心率的数值求出,接着利用a,b表示出双曲线的离心率,即可求出双曲线的离心率. 【解析】 由题意得椭圆+=1(a>b>0)的离心率e=, 所以=. 所以. 所以双曲线的离心率=. 故选B.
复制答案
考点分析:
相关试题推荐
已知{an}为等差数列,若a1+a5+a9=8π,则cos(a2+a8)的值为( )
A.-manfen5.com 满分网
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
若复数z=(x2+2x-3)+(x-1)i为纯虚数,则实数x的值为( )
A.3
B.1
C.-3
D.1或-3
查看答案
manfen5.com 满分网,g(x)=x3-x2-3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的manfen5.com 满分网,都有f(s)≥g(t)成立,求实数a的取值范围.
查看答案
已知椭圆的中心在原点,焦点在x轴上,一个顶点为B(0,-1),且其右焦点到直线manfen5.com 满分网的距离为3.
(1)求椭圆的方程;
(2)是否存在斜率为k(k≠0),且过定点manfen5.com 满分网的直线l,使l与椭圆交于两个不同的点M、N,且|BM|=|BN|?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案
在如图所示的多面体中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF∥AC,AB=manfen5.com 满分网,EF=EC=1,
(1)求证:平面BEF⊥平面DEF;
(2)求二面角A-BF-E的大小.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.