满分5 > 高中数学试题 >

已知函数,a为正常数. (1)若f(x)=lnx+φ(x),且,求函数f(x)的...

已知函数manfen5.com 满分网,a为正常数.
(1)若f(x)=lnx+φ(x),且manfen5.com 满分网,求函数f(x)的单调增区间;
(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有manfen5.com 满分网,求a的取值范围.
(1)先对函数y=f(x)进行求导,然后令导函数大于0(或小于0)求出x的范围,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,即可得到答案. (2)设h(x)=g(x)+x,依题意得出h(x)在(0,2]上是减函数.下面对x分类讨论:①当1≤x≤2时,②当0<x<1时,利用导数研究函数的单调性从及最值,即可求得求a的取值范围. 【解析】 (1),(2分) ∵,令f′(x)>0,得x>2,或, ∴函数f(x)的单调增区间为,(2,+∞).(6分) (2)∵, ∴, ∴,(8分) 设h(x)=g(x)+x,依题意,h(x)在(0,2]上是减函数. 当1≤x≤2时,,, 令h′(x)≤0,得:对x∈[1,2]恒成立, 设,则, ∵1≤x≤2,∴, ∴m(x)在[1,2]上递增,则当x=2时,m(x)有最大值为, ∴(12分) 当0<x<1时,,, 令h′(x)≤0,得:, 设,则, ∴t(x)在(0,1)上是增函数, ∴t(x)<t(1)=0, ∴a≥0,(15分)综上所述,(16分)
复制答案
考点分析:
相关试题推荐
设点P(m,n)在圆x2+y2=2上,l是过点P的圆的切线,切线l与函数y=x2+x+k(k∈R)的图象交于A,B两点,点O是坐标原点.
(1)当k=-2,m=-1,n=-1时,判断△OAB的形状;
(2)△OAB是以AB为底的等腰三角形;
①试求出P点纵坐标n满足的等量关系;
②若将①中的等量关系右边化为零,左边关于n的代数式可表为(n+1)2(ax2+bx+c)的形式,且满足条件的等腰三角形有3个,求k的取值范围.

manfen5.com 满分网 查看答案
设数列{an}的首项manfen5.com 满分网,前n项和为Sn,且满足2an+1+Sn=3( n∈N*).
(Ⅰ)求a2及an
(Ⅱ)求满足manfen5.com 满分网的所有n的值.
查看答案
汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);
轿车A轿车B轿车C
舒适型100150z
标准型300450600
按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(Ⅰ)求z的值;
(Ⅱ)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(Ⅲ)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本一均数之差的绝对值不超过0.5的概率.
查看答案
在△ABC中,角A、B、C的对应边分别为a、b、c,已知复数z1=3+2sinA•i,z2=sinA+(1+cosA)i(i是虚数单位),它们对应的向量依次为manfen5.com 满分网manfen5.com 满分网,且满足manfen5.com 满分网manfen5.com 满分网
(1)求∠A的值;
(2)求manfen5.com 满分网的值.
查看答案
如图,在直三棱柱ABC-A1B1C1中,AB=AC,点D在边BC上,AD⊥C1D.
(1)求证:AD⊥平面BCC1B1
(2)如果点E是B1C1的中点,求证:A1E∥平面ADC1

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.