满分5 > 高中数学试题 >

如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点...

manfen5.com 满分网如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE.
(1)求证:AG•EF=CE•GD;
(2)求证:manfen5.com 满分网
(1)要证明AG•EF=CE•GD我们可以分析积等式中四条线段的位置,然后判断它们所在的三角形是否相似,然后将其转化为一个证明三角形相似的问题. (2)由(1)的推理过程,我们易得∠DAG=∠GDF,又由公共角∠G,故△DFG∽△AGD,易得DG2=AG•GF,结合(1)的结论,不难得到要证明的结论. 证明:(1)连接AB,AC, ∵AD为⊙M的直径,∴∠ABD=90°, ∴AC为⊙O的直径,∴∠CEF=∠AGD, ∵∠DFG=∠CFE,∴∠ECF=∠GDF, ∵G为弧BD中点,∴∠DAG=∠GDF, ∵∠ECB=∠BAG,∴∠DAG=∠ECF, ∴△CEF∽△AGD, ∴, ∴AG•EF=CE•GD (2)由(1)知∠DAG=∠GDF, ∠G=∠G, ∴△DFG∽△AGD, ∴DG2=AG•GF, 由(1)知, ∴.
复制答案
考点分析:
相关试题推荐
设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG∥AB.
(Ⅰ)求三角形ABC顶点C的轨迹方程;
(Ⅱ)设顶点C的轨迹为D,已知直线L过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,满足OP⊥ON,求直线L的方程.
查看答案
设函数f(x)=lnx,g(x)=ax+manfen5.com 满分网,函数f(x)的图象与x轴的交点也在函数g(x)的图象上,且在此点处f(x)与g(x)有公切线.
(Ⅰ)求a、b的值;
(Ⅱ)设x>0,试比较f(x)与g(x)的大小.
查看答案
平面ABDE⊥平面ABC,AC⊥BC,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,AE=2BD=4,O、M分别为CE、AB的中点.
(Ⅰ) 证明:OD∥平面ABC;
(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.
查看答案
为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂,
(Ⅰ)求从A,B,C区中分别抽取的工厂个数;
(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率.
查看答案
已知函数f(x)=x2-ax+b (a,b∈R)的图象经过坐标原点,且f′(x)=1,数列{an}的前n项和Sn=f(n)(n∈N*).
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足an+1+log3n=log3bn,求数列{bn}的前n项和.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.