满分5 > 高中数学试题 >

已知关于x的一元二次函数f(x)=ax2-4bx+1. (1)设集合P={1,2...

已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域manfen5.com 满分网内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.
(1)本题是一个等可能事件的概率,试验发生包含的事件是3×5,满足条件的事件是函数f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,根据二次函数的对称轴,写出满足条件的结果,得到概率. (2)本题是一个等可能事件的概率问题,根据第一问做出的函数是增函数,得到试验发生包含的事件对应的区域和满足条件的事件对应的区域,做出面积,得到结果. 【解析】 (1)由题意知本题是一个等可能事件的概率, ∵试验发生包含的事件是3×5=15, 函数f(x)=ax2-4bx+1的图象的对称轴为, 要使f(x)=ax2-4bx+1在区间[1,+∞)上为增函数, 当且仅当a>0且,即2b≤a 若a=1则b=-1,若a=2则b=-1,1;若a=3则b=-1,1; ∴事件包含基本事件的个数是1+2+2=5 ∴所求事件的概率为. (2)由(Ⅰ)知当且仅当2b≤a且a>0时, 函数f(x)=ax2-4bx+1在区是间[1,+∞)上为增函数, 依条件可知试验的全部结果所构成的区域为 构成所求事件的区域为三角形部分 由得交点坐标为, ∴所求事件的概率为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在△ABC中,manfen5.com 满分网
(1)求sinA;
(2)记BC的中点为D,求中线AD的长.
查看答案
设a,b,c是三条不同直线,α,β,γ是三个不同平面,给出下列命题:
①若α⊥γ,β⊥γ,则α∥β;
②若a,b异面,a⊂α,b⊂β,a∥β,b∥α,则α∥β.;
③若α∩β=a,φ∩γ=b,γ∩a=c,且a∥b,则c∥β;
④若a,b为异面直线,a∥α,b∥α,c⊥a,c⊥b,则c⊥α
其中正确的命题是    查看答案
在清明节前,哈市某单位组织员工参加植树祭扫,林管局在植树前为了保证树苗质量,都会对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度,量出它们的高度如下:(单位:厘米)
甲:37  21  31  21  28  19  32  23  25  33
乙:10  30  47  27  46  14  26  11  43  46
根据抽测结果对两种树苗高度作比较,写出2个统计结论     查看答案
如图是由所输入的x值计算y值的一个算法程序,若x依次取数列manfen5.com 满分网(n∈N*,n≤2009)的项,则所得y值中的最小值为   
manfen5.com 满分网 查看答案
椭圆manfen5.com 满分网的离心率manfen5.com 满分网,右焦点F(c,0),方程ax2+bx-c=0的两个根分别为x1,x2,则点P(x1,x2)与圆x2+y2=2的位置关系是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.