满分5 > 高中数学试题 >

某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不作广告宣传且每件获利...

某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不作广告宣传且每件获利a元的前提下,可卖出b件.若作广告宣传,广告费为n千元时比广告费为(n-1)千元时多卖出manfen5.com 满分网件,(n∈N*).
(1)试写出销售量s与n的函数关系式;
(2)当a=10,b=4000时厂家应生产多少件这种产品,做几千元广告,才能获利最大?
对于(1)中的函数关系,设广告费为n千元时的销量为sn,则sn-1表示广告费为(n-1)元时的销量,由题意,sn--sn-1=,可知数列{sn}不成等差也不成等比数列,但是两者的差构成等比数列,对于这类问题一般有以下两种方法求【解析】 一、直接列式:由题,s=b++++…+=b(2-) 解法二、利用累差叠加法:,,…,累加结合等比数列的求和公式可求Sn (2))b=4000时,s=4000(2-),设获利为Tn,则有Tn=s•10-1000n=40000(2-)-1000n, 欲使Tn最大,根据数列的单调性可得,代入结合n为正整数解不等式可求n,进而可求S的最大值 (1)解法一、直接列式:由题,s=b++++…+=b(2-)(广告费为1千元时,s=b+;2千元时,s=b++;…n千元时s=b++++…+) 解法二、(累差叠加法)设s表示广告费为0千元时的销售量, 由题:,相加得Sn-S=+++…+, 即Sn=b++++…+=b(2-). (2)b=4000时,s=4000(2-),设获利为t,则有t=s•10-1000n=40000(2-)-1000n 欲使Tn最大,则,得,故n=5,此时s=7875. 即该厂家应生产7875件产品,做5千元的广告,能使获利最大.
复制答案
考点分析:
相关试题推荐
已知集合MD是满足下列性质的函数f(x)的全体:存在非零常数k,使得对定义域D内的任意两个不同的实数x1,x2,均有|f(x1)-f(x2)|≤k|x1-x2|成立.
(Ⅰ) 当D=R时,f(x)=x是否属于MD?说明理由;
(Ⅱ) 当D=[0,+∞)时,函数manfen5.com 满分网属于MD,求k的取值范围;
(Ⅲ) 现有函数f(x)=sinx,是否存在函数g(x)=kx+b(k≠0),使得下列条件同时成立:
①函数g(x)∈MD
②方程g(x)=0的根t也是方程f(x)=0的根,且g(f(t))=f(g(t));
③方程f(g(x))=g(f(x))在区间[0,2π)上有且仅有一解.若存在,求出满足条件的k和b;若不存在,说明理由.
查看答案
已知动点P(p,-1),Q(p,manfen5.com 满分网),过Q作斜率为manfen5.com 满分网的直线l,P Q中点M的轨迹为曲线C.
(1)证明:l经过一个定点而且与曲线C一定有两个公共点;
(2)若(1)中的其中一个公共点为A,证明:AP是曲线C的切线.
查看答案
某人玩硬币走跳棋的游戏,已知硬币出现正、反面的概率都是manfen5.com 满分网.棋盘上标有第0站、第1站、第2站、…、第100站.一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋子向前跳一站;若掷出反面,则棋子向前跳两站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束.设棋子跳到第n站的概率为Pn
(Ⅰ)求:P,Pl,P2
(Ⅱ)求证:manfen5.com 满分网;(n≤99,n∈N)
(Ⅲ)求:玩该游戏获胜的概率.
查看答案
manfen5.com 满分网如图,斜三棱柱ABC-A1B1C1中,面AA1C1C是菱形,∠ACC1=60°,侧面ABB1A1⊥AA1C1C,A1B=AB=AC=1.求证:
(1)AA1⊥BC1
(2)求点A1到平面ABC的距离.
查看答案
已知A、B、C三点的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),manfen5.com 满分网
(1)若manfen5.com 满分网,求角α的值;
(2)若manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.