满分5 > 高中数学试题 >

已知椭圆的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在一点P使...

已知椭圆manfen5.com 满分网的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在一点P使manfen5.com 满分网,则该椭圆的离心率的取值范围为   
由“”的结构特征,联想到在△PF1F2中运用由正弦定理得:两者结合起来,可得到,再由焦点半径公式,代入可得到:a(a+ex)=c(a-ex)解出x,由椭圆的范围,建立关于离心率的不等式求解.要注意椭圆离心率的范围. 【解析】 在△PF1F2中, 由正弦定理得: 则由已知得:, 即:a|PF1|=c|PF2| 设点(x,y)由焦点半径公式, 得:|PF1|=a+ex,|PF2|=a-ex 则a(a+ex)=c(a-ex) 解得: 由椭圆的几何性质知:x>-a则, 整理得e2+2e-1>0,解得:或,又e∈(0,1), 故椭圆的离心率:, 故答案为:.
复制答案
考点分析:
相关试题推荐
由命题“存在x∈R,使e|x-1|-m≤0”是假命题,得m的取值范围是(-∞,a),则实数a的值是    查看答案
设P为曲线C:y=x2-x+1上一点,曲线C在点P处的切线的斜率的范围是[-1,3],则点P纵坐标的取值范围是    查看答案
已知cosmanfen5.com 满分网=manfen5.com 满分网,cosmanfen5.com 满分网cosmanfen5.com 满分网=manfen5.com 满分网,cosmanfen5.com 满分网cosmanfen5.com 满分网cosmanfen5.com 满分网=manfen5.com 满分网,…,根据这些结果,猜想出的一般结论是    查看答案
manfen5.com 满分网=4,manfen5.com 满分网=3,且manfen5.com 满分网manfen5.com 满分网 的夹角为120°,则manfen5.com 满分网=    查看答案
如图是一个算法的流程图,则输出S的值是    manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.