如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60,
(1)求点A到平面PBD的距离的值;
(2)求二面角A-PB-D的余弦值.
考点分析:
相关试题推荐
(选修4-5:不等式选讲)
求函数
最大值.
查看答案
若两条曲线的极坐标方程分别为p=l与p=2cos(θ+
),它们相交于A,B两点,求线段AB的长.
查看答案
如图,在梯形ABCD中,AD∥BC,点E,F分别在边AB,CD上,设ED与AF相交于点G,若B,C,F,E四点共圆,求证:AG•GF=DG•GE.
查看答案
已知函数f(x)=
+x+(a-1)lnx+15a,其中a<0,且a≠1
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)设函数g(x)=
(e是自然对数的底数),是否存在a,使g(x)在[a,-a]上是减函数?若存在,求a的取值范围;若不存在,请说明理由.
查看答案