满分5 > 高中数学试题 >

设函数f(x)的定义域是(0,+∞),对任意正实数m,n恒有f(mn)=f(m)...

设函数f(x)的定义域是(0,+∞),对任意正实数m,n恒有f(mn)=f(m)+f(n),且当x>1时,f(x)<0,f(2)=-1
(1)求f(1)和f(manfen5.com 满分网)的值;
(2)求证:f(x)在(0,+∞)上是减函数.
(1)利用赋值法,对于任意正实数m,n恒有f(mn)=f(m)+f(n),可令m=n=1,先求出f(1),然后令 ,即可求出 的值; (2)先在定义域内任取两个值x1,x2,并规定大小,然后判定出f(x1),与f(x2)的大小关系,根据单调增函数的定义可知结论; 【解析】 (1)令m=n=1,则f(1)=f(1)+f(1), ∴f(1)=0(2分) 令 ,则 , ∴(4分) (2)设0<x1<x2,则 ∵当x>1时,f(x)<0 ∴(6分) (9分) 所以f(x)在(0,+∞)上是减函数(10分).
复制答案
考点分析:
相关试题推荐
某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格.销售量可以增加,且每星期多卖出的商品件数与商品单价的降低销x(单位:元,0≤x≤30)的平方成正比.已知商品单价降低2元时,一星期多卖出24件.
(Ⅰ)将一个星期的商品销售利润表示成x的函数;
(Ⅱ)如何定价才能使一个星期的商品销售利润最大?
查看答案
已知函数f(x)=ax2-2ax+2+b(a≠0),在区间[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)-(2m)•x在[2,4]上单调,求m的取值范围.
查看答案
已知函数f(x)=lgmanfen5.com 满分网
(Ⅰ)求证:对于f(x)的定义域内的任意两个实数a,b,都有f(a)+f(b)=f(manfen5.com 满分网);
(Ⅱ)判断f(x)的奇偶性,并予以证明.
查看答案
设集合A={x|x2<4},manfen5.com 满分网
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集为B,求a,b的值.
查看答案
(1)极坐标方程分别为ρ=2cosθ的圆与参数方程为manfen5.com 满分网的直线位置关系是   
(2)一个等腰三角形ABC的底边AC的长为6,△ABC的外接圆的半径长为5,则△ABC的面积是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.