满分5 > 高中数学试题 >

已知函数f(x)=x+1,设g1(x)=f(x),gn(x)=f(gn-1(x)...

已知函数f(x)=x+1,设g1(x)=f(x),gn(x)=f(gn-1(x))(n>1,n∈N*
(1)求g2(x),g3(x)的表达式,并猜想gn(x)(n∈N*)的表达式(直接写出猜想结果)
(2)若关于x的函数manfen5.com 满分网在区间(-∞,-1]上的最小值为6,求n的值.
(符号“manfen5.com 满分网”表示求和,例如:manfen5.com 满分网.)
(1)根据g1(x)=f(x),gn(x)=f(gn-1(x)),令n=2,3,即可求得求g2(x),g3(x)的表达式,并猜想gn(x)(n∈N*)的表达式; (2)根据(1)的结果代入求出,转化为二次函数利用配方法求最值,讨论对称轴是否在定义域内. 【解析】 (1)∵g1(x)=f(x)=x+1, ∴g2(x)=f(g1(x))=f(x+1)=(x+1)+1=x+2, g3(x)=f(g2(x))=f(x+2)=(x+2)+1=x+3, ∴猜想gn(x)=x+n (2)∵gn(x)=x+n, ∴ ∴ 1°当,即n≤2时,函数在区间(-∞,-1]上是减函数∴当x=-1时,,即n2-n-10=0,该方程没有整数解 2°当,即n>2时,,解得n=4, 综上所述,n=4
复制答案
考点分析:
相关试题推荐
设函数f(x)的定义域是(0,+∞),对任意正实数m,n恒有f(mn)=f(m)+f(n),且当x>1时,f(x)<0,f(2)=-1
(1)求f(1)和f(manfen5.com 满分网)的值;
(2)求证:f(x)在(0,+∞)上是减函数.
查看答案
某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格.销售量可以增加,且每星期多卖出的商品件数与商品单价的降低销x(单位:元,0≤x≤30)的平方成正比.已知商品单价降低2元时,一星期多卖出24件.
(Ⅰ)将一个星期的商品销售利润表示成x的函数;
(Ⅱ)如何定价才能使一个星期的商品销售利润最大?
查看答案
已知函数f(x)=ax2-2ax+2+b(a≠0),在区间[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)-(2m)•x在[2,4]上单调,求m的取值范围.
查看答案
已知函数f(x)=lgmanfen5.com 满分网
(Ⅰ)求证:对于f(x)的定义域内的任意两个实数a,b,都有f(a)+f(b)=f(manfen5.com 满分网);
(Ⅱ)判断f(x)的奇偶性,并予以证明.
查看答案
设集合A={x|x2<4},manfen5.com 满分网
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集为B,求a,b的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.