满分5 > 高中数学试题 >

已知{an}是首项为19,公差为-4的等差数列,Sn为{an}的前n项和. (Ⅰ...

已知{an}是首项为19,公差为-4的等差数列,Sn为{an}的前n项和.
(Ⅰ)求通项an及Sn
(Ⅱ)设{bn-an}是首项为1,公比为2的等比数列,求数列{bn}的通项公式及其前n项和Tn
(Ⅰ)先根据等差数列的通项公式和求和公式求得an和Sn. (Ⅱ)根据等比数列的通项公式求得{bn-an}的通项公式,根据(1)中的an求得bn,可知数列{bn}是由等差数列和等比数列构成,进而根据等差数列和等比数列的求和公式求得Tn. 【解析】 (Ⅰ)∵{an}是首项为19,公差为-4的等差数列 ∴an=19-4(n-1)=-4n+23.. ∵{an}是首项为19,公差为-4的等差数列其和为 (Ⅱ)由题意{bn-an}是首项为1,公比为2的等比数列, ∴bn-an=2n-1,所以bn=an+2n-1=2n-1-4n+23 ∴Tn=Sn+1+2+22+…+2n-1=-2n2+21n+2n-1
复制答案
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,ÐBAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC=2a,M,N分别为PC、PB的中点.
(1)求证:MN∥平面PAD;
(2)求证:PB⊥DM;
(3)求四棱锥P-ADMN的体积.

manfen5.com 满分网 查看答案
为了解某班学生喜爱打篮球是否与性别有关,对此班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为manfen5.com 满分网
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,A1,A2,A3,A4,A5还喜欢打羽毛球,B1,B2,B3还喜欢打乒乓球,C1,C2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:manfen5.com 满分网,其中n=a+b+c+d)
查看答案
设平面向量manfen5.com 满分网manfen5.com 满分网,函数manfen5.com 满分网
①求函数f(x)的值域;
②求函数f(x)的单调增区间.
③当manfen5.com 满分网,且manfen5.com 满分网时,求manfen5.com 满分网的值.
查看答案
(几何证明选讲选做题)如图,已知⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心,若manfen5.com 满分网,AB=2,PO=5,则⊙O的半径为   
manfen5.com 满分网 查看答案
在极坐标系中,圆p=2上的点到直线p(cosθmanfen5.com 满分网)=6的距离的最小值是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.