满分5 > 高中数学试题 >

已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有...

已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是( )
A.-1<b<0
B.b>2
C.b<-1或b>2
D.不能确定
先根据条件“对任意实数x都有f(1-x)=f(1+x)成立”得到对称轴,求出a,再研究函数f(x)在[-1,1]上的单调性,求出函数的最小值,使最小值大于零即可. 【解析】 ∵对任意实数x都有f(1-x)=f(1+x)成立 ∴函数f(x)的对称轴为x=1=,解得a=2 ∵函数f(x)的对称轴为x=1,开口向下 ∴函数f(x)在[-1,1]上是单调递增函数, 而f(x)>0恒成立,f(x)min=f(-1)=b2-b-2>0 解得b<-1或b>2, 故选C
复制答案
考点分析:
相关试题推荐
已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,则在R上f(x)的表达式是( )
A.-x(x-2)
B.x(|x|-2)
C.|x|(x-2)
D.|x|(|x|-2)
查看答案
偶函数y=f(x)(x∈R)在x<0时是增函数,若x1<0,x2>0且|x1|<|x2|,下列结论正确的是( )
A.f(-x1)<f(-x2
B.f(-x1)>f(-x2
C.f(-x1)=f(-x2
D.f(-x1),f(-x2)的大小关系不能确定
查看答案
设函数manfen5.com 满分网若f(x)>1,则x的取值范围是( )
A.(-1,1)
B.(-1,+∞)
C.(-∞,-2)∪(0,+∞)
D.(-∞,-1)∪(1,+∞)
查看答案
已知命题p:“∀x∈[0,1],a≥ex”,命题q:“∃x∈R,x2+4x+a=0”,若命题“p∧q”是真命题,则实数a的取值范围是( )
A.[e,4]
B.[1,4]
C.(4,+∞)
D.(-∞,1]
查看答案
函数y=e-x-ex满足( )
A.奇函数,在(0,+∞)上是减函数
B.偶函数,在(0,+∞)上是减函数
C.奇函数,在(0,+∞)上是增函数
D.偶函数,在(0,+∞)上是增函数
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.