在四边形ABCD中,∠ABC=∠BAD=90°,AB=BC=2AD=4,E,F,G分别是BC,CD,AB的中点(如图1).将四边形ABCD沿FG折成空间图形(如图2)后,
(1)求证:DE⊥FG;
(2)线段BG上是否存在一点M,使得AM∥平面BDF?若存在,试指出点M的位置,并证明之;若不存在,试说明理由.
考点分析:
相关试题推荐
已知椭圆E的中心在坐标原点O,经过两点
圆C以点(2,0)为圆心,椭圆的短半袖长为半径.
(1)求椭圆E的标准方程;
(2)若点P是圆C上的一个动点,求
的取值范围.
查看答案
在△ABC中,设角A,B,C的对边分别为a,b,c,若sinA=sinB=-cosC,
(1)求角A,B,C的大小;
(2)若BC边上的中线AM的长为
,求△ABC的面积.
查看答案
定义区间(c,d],(c,d],(c,d),[c,d]的长度均为d-c,其中d>c.若a,b是实数,且a>b,则满足不等式
≥1的x构成的区间的长度之和为
.
查看答案
已知函数方程f(x)=x
3+bx
2+cx+d(b,c,d为常数),当k∈(-∞,0)∪(4,+∞)时,方程f(x)-k=0有且仅有一个实根,当k∈(0,4)时,方程f(x)-k=0有3个相异实根.给出下列4个命题:
①方程f(x)=4和f'(x)=0有且仅有一个相同的实根;
②方程f(x)=0和f'(x)=0有且仅有一个相同的实根;
③方程f(x)+3=0的任一实根都大于f(x)-1=0的任一实根;
④方程f(x)+5=0的任一实根都小于f(x)-2=0的任一实根.
其中正确命题的序号是
.
查看答案
若不等式[(1-a)n-a]lga<0对任意的正整数n都成立,则a的取值范围是
.
查看答案