圆O外有一点P,圆上有一动点Q,∠OPQ在PQ与圆相切时取得最大值.如果OP变长,那么∠OPQ可以获得的最大值将变小.因为sin∠OPQ=,QO为定值,即半径,PO变大,则sin∠OPQ变小,由于∠OPQ∈(0,),所以∠OPQ也随之变小.可以得知,当∠OPQ=60°,且PQ与圆相切时,PO=2,而当PO>2时,Q在圆上任意移动,∠OPQ<60°恒成立.因此,P的取值范围就是PO≤2,即满足PO≤2,就能保证一定存在点Q,使得∠OPQ=60°,否则,这样的点Q是不存在的.
【解析】
由分析可得:PO2=x2+y2
又因为P在直线L上,所以x=-(3y-6)
故10y2-36y+3≤4
解得 ,
即x的取值范围是 ,
故选C