满分5 > 高中数学试题 >

如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点...

manfen5.com 满分网如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证:
(1)BE•DE+AC•CE=CE2
(2)∠EDF=∠CDB;
(3)E,F,C,B四点共圆.
(1)连接CD后,根据圆周角定理及∠BEC为△ABE与△CDE的共公角,我们易得△ABE∽△CDE,根据相似三角形性质,结合比例的性质,易得答案. (2)由(1)中△ABE∽△CDE,进而得到∠EDC=∠FDB,根据等角的补角相等,我们易得∠EDF=∠CDB. (3)AB是⊙O的直径所对的圆周角为直角,易得△ECB为直角三角形,结合直角三角形斜边上的中线等于斜边的一半,我们易得 E,F,C,B到点D的距离相等,即E,F,C,B四点共圆. 【解析】 (1)连接CD,如下图所示: 由圆周角定理,我们可得∠C=∠B 又由∠BEC为△ABE与△CDE的共公角, ∴△ABE∽△CDE, ∴BE:CE=AE:DE, ∴BE•DE=CE•AE ∴BE•DE+AC•CE=CE2(3分) (2)∵△ABE∽△CDE, ∴∠EDC=∠FDB, ∴∠EDF=∠CDB,(6分) (3)∵AB是⊙O的直径, ∴∠ECB=90°, ∴ 同理,, 所以,E,F,C,B到点D的距离相等, ∴E,F,C,B四点共圆.(10分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=alnx-ax-3(a∈R).
(I)当a=1时,求函数f(x)的单调区间;
(II)若函数y=f(x)的图象在点(2,f(x))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[manfen5.com 满分网+f(x)]在区间(t,3)上总存在极值?
(III)当a=2时,设函数h(x)=(p-2)x+manfen5.com 满分网-3,若对任意的x∈[1,2],f(x)≥h(x)恒成立,求实数P的取值范围.
查看答案
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,过焦点且垂直于长轴的直线被椭圆截得的弦长为1,过点M(3,0)的直线与椭圆C相交于两点A,B,
(1)求椭圆的方程;
(2)设P为椭圆上一点,且满足manfen5.com 满分网(O为坐标原点),当manfen5.com 满分网时,求实数t的取值范围.
查看答案
如图,四棱锥P-ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是∠ADC=60°的菱形,M为PB的中点
(1)求证:PA⊥平面CDM;
(2)求二面角D-MC-B的余弦值.

manfen5.com 满分网 查看答案
中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q<80时,为酒后驾车;当Q≥80时,为醉酒驾车  哈尔滨市公安局交通管理部门于2010年3月的一天对某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,查处醉酒驾车的有4人,依据上述材料回答下列问题:
(1)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数;
(2)从违法驾车的10人中抽取4人,求抽取到醉酒驾车人数ξ的分布列和期望;
(3)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.2和0.5,且每位驾驶员是否发生交通事故是相互独立的  依此计算被查处的10名驾驶员中至少有一人发生交通事故的概率.
查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的最小正周期和图象的对称轴方程;
(2)若manfen5.com 满分网时,f(x)的最小值为-2,求a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.