满分5 > 高中数学试题 >

设函数. (Ⅰ)研究函数f2(x)的单调性; (Ⅱ)判断fn(x)=0的实数解的...

设函数manfen5.com 满分网
(Ⅰ)研究函数f2(x)的单调性;
(Ⅱ)判断fn(x)=0的实数解的个数,并加以证明.
(I)写出要用的函数,对于函数求导,导函数是一个二次函数,配方整理看出导函数一定小于0,得到函数的单调性. (II)首先验证当n=1时,只有一个解,在验证n大于等于2时的情况,求出导数,根据导数的正负看出函数的单调性,看出交点的个数. 【解析】 (Ⅰ),f2′(x)=-1+x-x2=-, 所以f2(x)在R单调递减. (Ⅱ)f1(x)=1-x有唯一实数解x=1 由, 得fn′(x)=-1+x-x2+…+x2n-3-x2n-2. (1)若x=-1,则fn′(x)=-(2n-1)<0. (2)若x=0,则fn′(x)=-1<0. (3)若x≠-1,且x≠0时,则. ①当x<-1时,<0,x2n-1+1<0,fn′(x)<0. ②当x>-1时,fn′(x)<0 综合(1),(2),(3),得fn′(x)<0, 即fn(x)在R单调递减. 又fn(x)=1>0, = =, 所以fn(x)在(0,2)有唯一实数解,从而fn(x)在R有唯一实数解. 综上,fn(x)=0有唯一实数解.
复制答案
考点分析:
相关试题推荐
已知圆C:(x+2)2+y2=4,相互垂直的两条直线l1、l2都过点A(a,0).
(Ⅰ)当a=2时,若圆心为M(1,m)的圆和圆C外切且与直线l1、l2都相切,求圆M的方程;
(Ⅱ)当a=-1时,求l1、l2被圆C所截得弦长之和的最大值,并求此时直线l1的方程.
查看答案
manfen5.com 满分网如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船.
(Ⅰ)求处于C处的乙船和遇险渔船间的距离;
(Ⅱ)设乙船沿直线CB方向前往B处救援,其方向与manfen5.com 满分网成θ角,求f(x)=sin2θsinx+cos2θcosx(x∈R)的值域.
查看答案
在公差为d(d≠0)的等差数列{an}和公比为q的等比数列{bn}中,已知a1=b1=1,a2=b2,a8=b3
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)是否存在常数a,b,使得对于一切正整数n,都有an=logabn+b成立?若存在,求出常数a和b,若不存在说明理由.
查看答案
如图,在长方体ABCD-A1B1C1D1中,点E在棱CC1的延长线上,且CC1=C1E=BC=manfen5.com 满分网AB=1.
①求证:D1E∥平面ACB1
②求证:平面D1B1E⊥平面DCB1

manfen5.com 满分网 查看答案
manfen5.com 满分网随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.