-1)的图象的对称轴或对称中心是 ( )
与直线l:y=x-c的交点为P(异于原点O).在曲线C上取一点P1(x1,y1),过点P1作P1Q1平行于x轴,交直线l于Q1,过点Q1作Q1P2平行于y轴,交曲线C于P2(x2,y2);接着过点P2作P2Q2平行于x轴,交直线l于Q2,过点Q2作Q2P3平行于y轴,交曲线C于P3(x3,y3);如此下去,可得到点P4(x4,y4),P5(x5,y5),…,Pn(xn,yn),设点P坐标为
,x1=b,0<b<a.
时,求证:
.
+
=1(a>b>0)的两个焦点,O为坐标原点,点P(-1,
)在椭圆上,且
•
=0,⊙O是以F1F2为直径的圆,直线l:y=kx+m与⊙O相切,并且与椭圆交于不同的两点A,B
•
=λ,且满足
≤λ≤
时,求弦长|AB|的取值范围.
成等比数列,Tn为{bn}前n项和,
,证明:2n<c1+c2+…+cn<2n+3(n∈N*).