满分5 > 高中数学试题 >

如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E...

如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=λa(0<λ≤1).
(1)求证:对任意的λ∈(0,1],都有AC⊥BE;
(2)若二面角C-AE-D的大小为60°,求λ的值.

manfen5.com 满分网
(1)以D为原点,DA,DC,DS的方向分别作为x,y,z轴的正方向建立空间直角坐标系,分别求出,的坐标,计算向量的数量积,只要说明数量积与λ无关即可; (2)分别求出平面ADE与平面ACE的一个法向量,利用二面角C-AE-D的大小为60°建立两法向量的关系式,求出λ的值即可. 【解析】 以D为原点,DA,DC,DS的方向分别作为x,y,z轴的正方向建立如图所示的空间直角坐标系, 则D(0,0,0),A(a,0,0), B(a,a,0),C(0,a,0),E(0,0,λa), (1)证明:∵=(-a,a,0), =(-a,-a,λa),=(a,0,-λa),=(0,a,-λa). ∴•=(-a,a,0)•(-a,-a,λa) =a2-a2+0•λa=0, 即对任意的λ∈(0,1],都有AC⊥BE. (2)=(0,a,0)为平面ADE的一个法向量. 设平面ACE的一个法向量为n=(x,y,z), 则n⊥E,n⊥E, ∴即 取z=1,得n=(λ,λ,1). ∴cos60°═⇔=2|λ|. 由λ∈(0,1],解得λ=.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网,其中a为正实数.
(1)当manfen5.com 满分网时,求f(x)的极值点;
(2)若f(x)为manfen5.com 满分网上的单调函数,求a的取值范围.
查看答案
如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.
(1)求渔船甲的速度;
(2)求sinα的值.

manfen5.com 满分网 查看答案
设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若manfen5.com 满分网对一切x∈R恒成立,则
manfen5.com 满分网
manfen5.com 满分网
③f(x)既不是奇函数也不是偶函数;
④f(x)的单调递增区间是manfen5.com 满分网
⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.
以上结论正确的是    (写出所有正确结论的编号). 查看答案
已知直线ax+by+c=0与圆:x2+y2=1相交于A、B两点,且manfen5.com 满分网,则manfen5.com 满分网=    查看答案
四棱锥P-ABCD的顶点P在底面ABCD上的投影恰好是A,其正视图与侧视图都是腰长为a的等腰直角三角形.则在四棱锥P-ABCD的任意两个顶点的连线中,互相垂直的异面直线共有    对.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.