满分5 > 高中数学试题 >

一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的...

一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是manfen5.com 满分网;从袋中任意摸出2个球,至少得到1个白球的概率是manfen5.com 满分网
(Ⅰ)若袋中共有10个球,
   从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ.
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于manfen5.com 满分网.并指出袋中哪种颜色的球个数最少.
(I)首先根据从袋中任意摸出2个球,至少得到1个白球的概率是,列出关系式,得到白球的个数,从袋中任意摸出3个球,白球的个数为ξ,根据题意得到变量可能的取值,结合对应的事件,写出分布列和期望. (II)设出两种球的个数,根据从袋中任意摸出2个球,至少得到1个黑球的概率不大于,得到两个未知数之间的关系,得到白球的个数比黑球多,白球个数多于,红球的个数少于,得到袋中红球个数最少. 【解析】 (Ⅰ)记“从袋中任意摸出两个球,至少得到一个白球”为事件A, 设袋中白球的个数为x, 则, 得到x=5. 故白球有5个. 随机变量ξ的取值为0,1,2,3, ∴分布列是 ∴ξ的数学期望. (Ⅱ)证明:设袋中有n个球,其中y个黑球,由题意得, ∴2y<n,2y≤n-1, 故. 记“从袋中任意摸出两个球,至少有1个黑球”为事件B, 则. ∴白球的个数比黑球多,白球个数多于,红球的个数少于. 故袋中红球个数最少.
复制答案
考点分析:
相关试题推荐
已知数列{an}(n为正整数)是首项是a1,公比为q的等比数列.
(1)求和:a1C2-a2C21+a3C22,a1C3-a2C31+a3C32-a4C33
(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.
查看答案
(1)已知矩阵manfen5.com 满分网,矩阵M对应的变换把曲线y=x2变为曲线C,求C的方程.
(2)已知a,b,c为正实数,求证:manfen5.com 满分网
查看答案
已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8.
(Ⅰ)若m=2,求函数g(x)的单调区间;
(Ⅱ)若方程f(x)=2|m|在x∈[-4,+∞)恒有唯一解,求实数m的取值范围;
(Ⅲ)若对任意x1∈(-∞,4],均存在x2∈[4,+∞),使得f(x1)=g(x2)成立,求实数m的取值范围.
查看答案
已知A(0,1)、B(0,2)、C(4t,2t2-1)(t∈R),⊙M是以AC为直径的圆,再以M为圆心、BM为半径作圆交x轴交于D、E两点.
(Ⅰ)若△CDE的面积为14,求此时⊙M的方程;
(Ⅱ)试问:是否存在一条平行于x轴的定直线与⊙M相切?若存在,求出此直线的方程;若不存在,请说明理由;
(Ⅲ)求manfen5.com 满分网的最大值,并求此时∠DBE的大小.
查看答案
设数列{an}的通项是关于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整数的个数.
(1)求an并且证明{an}是等差数列;
(2)设m、k、p∈N*,m+p=2k,求证:manfen5.com 满分网+manfen5.com 满分网manfen5.com 满分网
(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.