满分5 > 高中数学试题 >

已知椭圆的左、右顶点分别为A,B,圆x2+y2=4上有一动点P,P在x轴的上方,...

已知椭圆manfen5.com 满分网的左、右顶点分别为A,B,圆x2+y2=4上有一动点P,P在x轴的上方,C(1,0),直线PA交椭圆E于点D,连结DC,PB.
(1)若∠ADC=90°,求△ADC的面积S;
(2)设直线PB,DC的斜率存在且分别为k1,k2,若k1=λk2,求λ的取值范围.

manfen5.com 满分网
(1)设D(x,y),利用勾股定理和两点间的距离公式即可关于x,y的方程,与椭圆的方程联立即可解得点D的坐标,利用S△ADC=即可得出; (2)设P(x,y),得到直线PA的方程,与椭圆的方程联立及利用点P在圆上即可表示出直线PB、DC的斜率,利用k1=λk2,及反比例函数的单调性即可得出. 【解析】 (1)设D(x,y),∵∠ADC=90°,∴AD2+DC2=AC2, ∴(x+2)2+y2+(x-1)2+y2=9,化为x2+y2+x-2=0  ①. ∵点D在椭圆E上,∴  ②. 联立①②得,消去y得3x2+4x-4=0, 又-2<x<2,解得. 代入椭圆方程解得. ∴S△ADC==. (2)设P(x,y),则直线PA的方程为, 代入椭圆的方程得到, ∵,∴, 化为. 此方程有一个实数根-2,设D(x1,y1),则, 代入直线PA的方程得, ∴,=. ∵k1=λk2,∴==, ∵-2<x<2,, ∴λ的取值范围为(-∞,0)∪(0,3).
复制答案
考点分析:
相关试题推荐
某部门要设计一种如图所示的灯架,用来安装球心为O,半径为R(米)的球形灯泡.该灯架由灯托、灯杆、灯脚三个部件组成,其中圆弧形灯托manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网所在圆的圆心都是O、半径都是R(米)、圆弧的圆心角都是θ(弧度);灯杆EF垂直于地面,杆顶E到地面的距离为h(米),且h>R;灯脚FA1,FB1,FC1,FD1是正四棱锥F-A1B1C1D1的四条侧棱,正方形A1B1C1D1的外接圆半径为R(米),四条灯脚与灯杆所在直线的夹角都为θ(弧度).已知灯杆、灯脚的造价都是每米a(元),灯托造价是每米manfen5.com 满分网(元),其中R,h,a都为常数.设该灯架的总造价为y(元).
(1)求y关于θ的函数关系式;
(2)当θ取何值时,y取得最小值?

manfen5.com 满分网 查看答案
已知实数a,b,c∈R,函数f(x)=ax3+bx2+cx满足f(1)=0,设f(x)的导函数为f′(x),满足f′(0)f′(1)>0.
(1)求manfen5.com 满分网的取值范围;
(2)设a为常数,且a>0,已知函数f(x)的两个极值点为x1,x2,A(x1,f(x1)),B(x2,f(x2)),求证:直线AB的斜率manfen5.com 满分网
查看答案
如图,在三棱柱A1B1C1-ABC中,已知E,F,G分别为棱AB,AC,A1C1的中点,∠ACB=90°,A1F⊥平面ABC,CH⊥BG,H为垂足.求证:
(1)A1E∥平面GBC;
(2)BG⊥平面ACH.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C的对边分别是a,b,c,且A,B,C成等差数列.
(1)若manfen5.com 满分网manfen5.com 满分网=-manfen5.com 满分网,b=manfen5.com 满分网,求a+c的值;
(2)求2sinA-sinC的取值范围.
查看答案
设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能成为三角形的三条边长,那么M的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.