满分5 > 高中数学试题 >

(选修4-5:不等式选讲) 已知a,b,c都是正数,且a+2b+3c=6,求的最...

(选修4-5:不等式选讲)
已知a,b,c都是正数,且a+2b+3c=6,求manfen5.com 满分网的最大值.
利用柯西不等式,结合a+2b+3c=6,即可求得的最大值. 【解析】 由柯西不等式可得 ()2≤[12+12+12][()2+()2+()2]=3×9 ∴≤3,当且仅当时取等号. ∴的最大值是3 故最大值为3.
复制答案
考点分析:
相关试题推荐
(选修4-4:坐标系与参数方程)
已知直线l的参数方程manfen5.com 满分网(t为参数),圆C的极坐标方程:ρ+2sinθ=0.
(1)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
(2)在圆C上求一点P,使得点P到直线l的距离最小.
查看答案
(选修4-2:矩阵与变换)
已知矩阵A=manfen5.com 满分网的一个特征值为λ1=-1,其对应的一个特征向量为manfen5.com 满分网,已知manfen5.com 满分网,求A5β.
查看答案
(选修4-1 几何证明选讲)
如图,已知CB是⊙O的一条弦,A是⊙O上任意一点,过点A作⊙O的切线交直线CB于点P,D为⊙O上一点,且∠ABD=∠ABP.
求证:AB2=BP•BD.

manfen5.com 满分网 查看答案
设数列{an}的各项均为正数,其前n项的和为Sn,对于任意正整数m,n,manfen5.com 满分网恒成立.
(1)若a1=1,求a2,a3,a4及数列{an}的通项公式;
(2)若a4=a2(a1+a2+1),求证:数列{an}成等比数列.
查看答案
已知椭圆manfen5.com 满分网的左、右顶点分别为A,B,圆x2+y2=4上有一动点P,P在x轴的上方,C(1,0),直线PA交椭圆E于点D,连结DC,PB.
(1)若∠ADC=90°,求△ADC的面积S;
(2)设直线PB,DC的斜率存在且分别为k1,k2,若k1=λk2,求λ的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.