满分5 > 高中数学试题 >

已知数列{an}的前n项和Sn=2n,数列{bn}满足b1=-1,bn+1=bn...

已知数列{an}的前n项和Sn=2n,数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n=1,2,3,…).
(1)求数列{an}的通项an
(2)求数列{bn}的通项bn
(3)若manfen5.com 满分网,求数列{cn}的前n项和Tn
(1)当n大于等于2时,根据Sn=2n,得到Sn-1=2n-1,两者相减即可得到an的通项公式,当n=1时,求出S1=a1=2,分两种情况n=1和n大于等于2写出数列{an}的通项an; (2)分别令n=1,2,3,…,n列举出数列的各项,得到b2-b1=1,b3-b2=3,b4-b3=5,…,bn-bn-1=2n-3,以上各式相加后,利用等差数列的前n项和公式化简后,将b1=-1代入即可求出数列{bn}的通项bn; (3)分两种情况n等于1和n大于等于2,把(1)和(2)中分别求出的两通项公式代入,得到数列{cn}的通项公式,列举出数列{cn}的前n项和Tn,两边同乘以2后,两等式相减后,利用等比数列的前n项和公式化简后,即可得到数列{cn}的前n项和Tn的通项公式. 【解析】 (1)∵Sn=2n,∴Sn-1=2n-1,(n≥2). ∴an=Sn-Sn-1=2n-2n-1=2n-1(n≥2).(2分) 当n=1时,21-1=1≠S1=a1=2, ∴(4分) (2)∵bn+1=bn+(2n-1), ∴b2-b1=1,b3-b2=3,b4-b3=5,…,bn-bn-1=2n-3, 以上各式相加得. ∵b1=-1,∴bn=n2-2n.(8分) (3)由题意得 ∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1, ∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n, ∴-Tn=2+22+23+…+2n-1-(n-2)×2n= =2n-2-(n-2)×2n=-2-(n-3)×2n, ∴Tn=2+(n-3)×2n.(12分).
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax2+(b-8)x-a-ab(a≠0),当x∈(-3,2)时,f(x)>0;当x∈(-∞,-3)∪(2,+∞)时,f(x)<0.
(1)求f(x)在[0,1]内的值域;
(2)c为何值时,不等式ax2+bx+c≤0在[1,4]上恒成立.
查看答案
如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,E为PD中点.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角E-AC-D的大小;
(Ⅲ)若F为线段BC的中点,求点D到平面PAF的距离.

manfen5.com 满分网 查看答案
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是manfen5.com 满分网,遇到红灯时停留的时间都是2min.
(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.
查看答案
已知函数f(x)=cos2x-sin2x+2manfen5.com 满分网sonxcosx+1.
(1)求f(x)的最小正周期,并求f(x)的最小值;
(2)若f(a)=2,且a∈[manfen5.com 满分网manfen5.com 满分网],求a的值.
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,AH为BC边上的高,给出以下四个结论:
manfen5.com 满分网;②manfen5.com 满分网;③manfen5.com 满分网=b2+c2-2bc•cosA;④manfen5.com 满分网.其中所有正确结论的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.