满分5 > 高中数学试题 >

设函数x(x∈R),其中m>0. (1)当m=1时,求曲线y=f(x)在点(1,...

设函数manfen5.com 满分网x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间与极值;
(3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.
(1),易得函数在所求点的斜率. (2)当f′(x)≥0,函数单增,f′(x)≤0时单减,令f′(x)=0的点为极值点. (3)由题意属于区间[x1,x2]的点的函数值均大于f(1),由此计算m的范围. 【解析】 (1)当, 故f'(1)=-1+2=1,所以曲线y=f(x)在点(1,f(1))处的切线的斜率为1.(2分) (2)f'(x)=-x2+2x+m2-1,令f'(x)=0,解得x=1-m或x=1+m. ∵m>0,所以1+m>1-m,当x变化时,f'(x),f(x)的变化情况如下表: ∴f(x)在(-∞,1-m),(1+m,+∞)内是减函数,在(1-m,1+m)内是增函数. 函数f(x)在x=1-m处取得极小值f(1-m),且f(1-m)=, 函数f(x)在x=1+m处取得极大值f(1+m),且f(1+m)=.(6分) (3)由题设,, ∴方程有两个相异的实根x1,x2, 故,∵m>0 解得m,(8分) ∵x1<x2,所以2x2>x1+x2=3, 故x2>.(10分) ∵对任意的x∈[x1,x2],x-x1≥0,x-x2≤0, 则,又f(x1)=0,所以f(x)在[x1,x2]上的最小值为0, 于是对任意的x∈[x1,x2],f(x)>f(1)恒成立的充要条件是f(1)=m2-<0, 解得, ∵由上m, 综上,m的取值范围是(,).(14分)
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和Sn=2n,数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n=1,2,3,…).
(1)求数列{an}的通项an
(2)求数列{bn}的通项bn
(3)若manfen5.com 满分网,求数列{cn}的前n项和Tn
查看答案
已知函数f(x)=ax2+(b-8)x-a-ab(a≠0),当x∈(-3,2)时,f(x)>0;当x∈(-∞,-3)∪(2,+∞)时,f(x)<0.
(1)求f(x)在[0,1]内的值域;
(2)c为何值时,不等式ax2+bx+c≤0在[1,4]上恒成立.
查看答案
如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,E为PD中点.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角E-AC-D的大小;
(Ⅲ)若F为线段BC的中点,求点D到平面PAF的距离.

manfen5.com 满分网 查看答案
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是manfen5.com 满分网,遇到红灯时停留的时间都是2min.
(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.
查看答案
已知函数f(x)=cos2x-sin2x+2manfen5.com 满分网sonxcosx+1.
(1)求f(x)的最小正周期,并求f(x)的最小值;
(2)若f(a)=2,且a∈[manfen5.com 满分网manfen5.com 满分网],求a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.