满分5 > 高中数学试题 >

如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平...

manfen5.com 满分网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上.
(1)求证:BC⊥平面ACFE;
(2)当EM为何值时,AM∥平面BDF?证明你的结论;
(3)求二面角B-EF-D的平面角的余弦值.
(1)由已知中梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,我们易求出AC⊥BC,结合已知中平面ACFE⊥平面ABCD,及平面与平面垂直的性质定理,即可得到BC⊥平面ACFE. (2)以点ABC-A1B1C1为原点,△ABC所在直线为坐标轴,建立空间直角坐标系,看出AM∥平面BDF等价于与、共面,也等价于存在实数m、n,使=m+n,根据向量之间的关系得到结论. (3)要求两个平面所成的角,根据向量的加减运算做出平面的法向量,二面角B-EF-D的大小就是向量与向量所夹的角.根据向量的夹角做出结果. 证明:(1)在梯形ABCD中,∵AB∥CD, ∴四边形ABCD是等腰梯形, 且∠DCA=∠DAC=30°,∠DCB=120° ∴∠ACB=∠DCB-∠DCA=90° ∴AC⊥BC 又∵平面ACFE⊥平面ABCD,交线为AC, ∴BC⊥平面ACFE 【解析】 (2)当时,AM∥平面BDF, 以点ABC-A1B1C1为原点,△ABC所在直线为坐标轴,建立空间直角坐标系,则, AM∥平面BDF⇔与、共面,也等价于存在实数m、n,使=m+n, 设. ∵=(-a,0,0),,0,0) ∴=+=(-at,0,0) 又=(a,-a,-a),=(0,a,-a), 从而要使得:成立, 需,解得∴当时,AM∥平面BDF (3B(0,a,0),, 过D作DG⊥EF,垂足为G.令==λ(a,0,0), =+=(aλ,0,a),=-=(λa-a,a,a) 由得,, ∴ ∴,即 ∵BC⊥AC,AC∥EF, ∴BC⊥EF,BF⊥EF ∴二面角B-EF-D的大小就是向量与向量所夹的角. ∵=(0,a,-a) cos<,>=,即二面角B-EF-D的平面角的余弦值为.
复制答案
考点分析:
相关试题推荐
已知中心在原点O,焦点在x轴上的椭圆C的离心率为manfen5.com 满分网,点A,B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为manfen5.com 满分网
(1)求椭圆C的标准方程;
(2)已知点E(3,0),设点P、Q是椭圆C上的两个动点,满足EP⊥EQ,求manfen5.com 满分网的取值范围.

manfen5.com 满分网 查看答案
已知参赛号码为1~4号的四名射箭运动员参加射箭比赛.
(1)通过抽签将他们安排到1~4号靶位,试求恰有一名运动员所抽靶位号与其参赛号码相同的概率;
(2)记1号,2号射箭运动员,射箭的环数为ξ(ξ所有取值为0,1,2,3…,10).
根据教练员提供的资料,其概率分布如下表:
ξ12345678910
P10.060.040.060.30.20.30.04
P20.040.050.050.20.320.320.02
①若1,2号运动员各射箭一次,求两人中至少有一人命中8环的概率;
②判断1号,2号射箭运动员谁射箭的水平高?并说明理由.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
(Ⅰ)求B的值;
(Ⅱ)求2sin2A+cos(A-C)的范围.
查看答案
对大于或等于2的自然数m的n次幂进行如下方式的“分裂”:
manfen5.com 满分网
按此方法,52的“分裂”中最大数是    ,若m3的“分裂”中的最小数是21,则m的值为    查看答案
已知函数f(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,则实数m的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.