设函数f(x)=ln(1+x),g(x)=
(x>0),数列{a
n}满足:a
1=
,a
n+1=g(a
n)(n∈N).
(Ⅰ)当x>-1时,比较x与f(x)的大小;
(Ⅱ)求数列{a
n}的通项公式;
(Ⅲ)求证:a
1+a
2+…+a
n>ln
.
考点分析:
相关试题推荐
已知函数f(x)=
(1)判断函数f(x)在区间(0,+∞)上的单调性并加以证明;
(2)求函数f(x)的值域;
(3)如果关于x的方程f(x)=kx
3有三个不同的实数解,求实数k的取值范围.
查看答案
如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上.
(1)求证:BC⊥平面ACFE;
(2)当EM为何值时,AM∥平面BDF?证明你的结论;
(3)求二面角B-EF-D的平面角的余弦值.
查看答案
已知中心在原点O,焦点在x轴上的椭圆C的离心率为
,点A,B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为
.
(1)求椭圆C的标准方程;
(2)已知点E(3,0),设点P、Q是椭圆C上的两个动点,满足EP⊥EQ,求
的取值范围.
查看答案
已知参赛号码为1~4号的四名射箭运动员参加射箭比赛.
(1)通过抽签将他们安排到1~4号靶位,试求恰有一名运动员所抽靶位号与其参赛号码相同的概率;
(2)记1号,2号射箭运动员,射箭的环数为ξ(ξ所有取值为0,1,2,3…,10).
根据教练员提供的资料,其概率分布如下表:
ξ | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
P1 | | | | | 0.06 | 0.04 | 0.06 | 0.3 | 0.2 | 0.3 | 0.04 |
P2 | | | | | 0.04 | 0.05 | 0.05 | 0.2 | 0.32 | 0.32 | 0.02 |
①若1,2号运动员各射箭一次,求两人中至少有一人命中8环的概率;
②判断1号,2号射箭运动员谁射箭的水平高?并说明理由.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
(Ⅰ)求B的值;
(Ⅱ)求2sin
2A+cos(A-C)的范围.
查看答案